

Planning Study

September 2013

ALASKA INTERNATIONAL AIRPORT SYSTEM

PLANNING STUDY

Prepared for:

Alaska International Airport System P.O. Box 196900 Anchorage, Alaska 99519-6900

Prepared by:

DOWL HKM 4041 B Street Anchorage, Alaska 99503 (907) 562-2000

W.O. 60465

September 2013

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	I
FINDINGS/RECOMMENDATIONS	X
	1
2.0 FORECAST SUMMARY	2
2.1 Purpose and Background	2
2.2 Rey Porecast Assumptions	8
2.4 Cargo Forecasts	10
2.5 Other Activity Forecasts	13
2.6 Operations Forecasts	14
2.7 Forecast Scenarios	16
2.8 Forecast Conclusions	23
3.0 RUNWAY CAPACITY ALTERNATIVES ANALYSIS	25
3.1 Method of Analysis	25
3.1.1 Airfield Operating Modes	30
3.1.2 Airfield Capacity	40
3.1.3 Delay Parameters	42
3.1.4 Integrated Cargo Carriers	43 <i>AA</i>
3.1.6 Passenger Carriers and General Aviation	44
3.2 Capacity and Delay Results	45
3.2.1 ANC Capacity and Delay Results	45
3.2.1.1 ANC Configuration 1-VFR	54
3.2.1.2 ANC Configuration 1-IFR	54
3.2.1.3 ANC Configuration 2-VFR	55
3.2.1.4 ANC Configuration 4-VFR	55
3.2.2 FAI Capacity and Delay Results	
3.2.2.1 FAI Configuration 1-VFK	
3.3 Strategies to Address Delay	
3.4 Capacity Balancing Strategy	
3.5 Trigger Points	68
3.6 Impacts of Shifting Traffic to FAI	70
3.7 Use of Capacity at non-AIAS Airports	72
3.7.1 Providing Capacity at a New Airport	72
3.7.2 Use of an Existing Non-AIAS Airport	74
4.0 AIAS OTHER FACILITIES AND SERVICES	76
4.1 AIAS Runways	76
4.1.1 FAI Runways	76
4.1.2 ANC Runways	78
4.2 AIAS Laxiways	/8
4.2.1 FAI Taxiways	70
4.2.2 AINC Taxiways	
4.2.3.1 Future FAI Taxiway Demand/Canacity Issues	81
4.2.3.2 Future ANC Taxiway Demand/Capacity Issues	81
4.3 AIAS Tech Stop Apron Hardstands	82
4.3.1 FAI Tech Stop Hardstands	82
4.3.2 ANC Tech Stop Hardstands	84

TABLE OF CONTENTS (cont)

Page

4.3.3 Future AIAS Hardstand Demand/Capacity Issues	.89
4.3.3.1 Future ANC Hardstand Demand/Capacity	89
4.3.3.2 Future FAI Hardstand Demand/Capacity	89
4.4 AIAS Fueling	
4.4.1 FAI Fueling	91
4.4.2 ANC Fueling	93
4.4.3 Future AIAS Fuel Demand/Capacity Issues	94
4.4.3.1 Future FAI Fuel Demand/Capacity	94
4.4.3.2 Future ANC Fuel Demand/Capacity	95
4.5 AIAS Deicing	.96
4.5.1 FAI Deicing	.96
4.5.2 ANC Deicing	97
4 5 3 Future AIAS Deicing Demand/Canacity Issues	98
4 5 3 1 Future FAI Deicing Demand/Canacity	98
4.5.3.2 Future ANC Deicing Demand/Canacity	98
A 6 AIAS Aircraft Maintenance	08
4.0 AIAS Allerant Maintenance	.90
4.6.2 ANC Aircraft Maintenance	
4.0.2 ANC AIICIAII Maintenance	
4.7 AIAS CIEW SErvices	
4.7.1 FAI Crew Services	
4.7.2 ANC Crew Services	
4.8 Other AIAS Services	
4.9 Other Carrier Input on use of ANC Versus FAI	100
4.10 AIAS Facilities and Services Summary	104
5.0 INCENTIVES ANALYSIS	106
5.1 FAA Regulation of Airport Incentives	106
5.1.1 General Guidance for Airport Sponsored Incentives	107
5.1.2 Incentives Offered by Non-Airport Entities	108
5.1.3 Application to the Proposed FAI Tech Stop Incentives	108
5.2 Incentives at Other United States Airports	109
5.3 Shaping a Prospective AIAS Incentive Plan	113
5.3.1 Potential Non-AIAS Incentives	113 11A
5.3.2 External Factors Affecting Carriers Route Choices	115
5.3.2 Other Operational Considerations	115
5.4 Einancial Implications of Incentives to Move Tech Stops to EAI	117
5.5 Financial Costs of Puilding Additional Infrastructure at ANC	11/
5.5 Financial Costs of Dununing Additional Infrastructure at AINC	110
6.0 RISK ASSESSMENT	121
6.1 Risk of Not Taking Action	121
6.1.1 Airlines Delay Costs	122
6.1.2 What is the Effect on the Landing Fee from Lost International Cargo	
Traffic?	123
6.2 Risk of Taking Action	124
6.2.1 Build Capacity That is Not Needed. or Before it is Needed	124
6.2.2 Risks of Incentivizing a Shift of Traffic to FAI	125
6.2.3 Risks of Scaring Away International Cargo Traffic	125
6.3 Risks to Alaska	126
6.3.1 Economic Impacts of International Cargo Operations	126
632 Potential Air Service/Fare Impacts	126
	120
7.0 FINDINGS/RECOMMENDATIONS	129

TABLE OF CONTENTS (cont)

EXHIBITS

Exhibit 2.1:	Summary of Forecast Scenarios - Passenger Enplanements	19
Exhibit 2.2:	Summary of Forecast Scenarios - Air Cargo Tonnage	21
Exhibit 2.3:	Summary of Forecast Scenarios - Total Aircraft Operations	22
Exhibit 3.1:	Anchorage International Airport - Future 1 Hourly Operations	26
Exhibit 3.2:	Anchorage International Airport - Future 2 Hourly Operations	27
Exhibit 3.3:	Fairbanks International Airport - Future 1 Operations	28
Exhibit 3.4:	Fairbanks International Airport - Future 2 Hourly Operations	29
Exhibit 3.5:	Anchorage International Airport - SIMMOD Link-Node Structure	31
Exhibit 3.6:	Fairbanks International Airport - SIMMOD Link-Node Structure	32
Exhibit 3.7:	Anchorage International Airport - Configuration 1 Diagram VFR	33
Exhibit 3.8:	Anchorage International Airport - Configuration 1 Diagram IFR	34
Exhibit 3.9:	Anchorage International Airport - Configuration 2 Diagram VFR	35
Exhibit 3.10:	Anchorage International Airport - Configuration 4 Diagram VFR	36
Exhibit 3 11	Anchorage International Airport - Configuration 3 Diagram VFR	37
Exhibit 3.12	Fairbanks International Airport - Configuration 1 Diagram VFR	
Exhibit 5.12.	(North Flow)	38
Exhibit 3 13.	Fairbanks International Airport - Configuration 1 Diagram IFR	
LAMOR 5.15.	(North Flow)	30
Exhibit 3 14.	Hourly Capacity Anchorage International Airport - Configuration 4 VER	<i>5</i> / <i>A</i> 1
Exhibit 3.14.	Capacity and Delay Future 1 Anchorage International Airport -	+1
Exhibit 5.15.	Configuration 1 VEP	16
Exhibit 2 16.	Connective and Delay Euture 2 Anchorage International Airport	40
Exhibit 5.10.	Configuration 1 VEP	17
Exhibit 2 17.	Connective and Delay Euture 1 Anchorage International Airport	4/
EXHIBIT 5.17.	Capacity and Delay Future 1 Anchorage International Airport -	18
Exhibit 3 18.	Connective and Delay Future 1 Anchorage International Airport	40
Exhibit 5.16.	Configuration 1 IER	10
Exhibit 3 19.	Canacity and Delay Future 1 Anchorage International Airport -	
Exhibit 5.17.	Configuration 2 VER	50
Exhibit 3 20.	Canacity and Delay Future 2 Anchorage International Airport -	
Exhibit 5.20.	Configuration 2 VER	51
Exhibit 3 21.	Conscity and Delay Future 1 Anchorage International Airport	
EXHIOR 5.21.	Configuration 4 VER	52
Exhibit 2 22.	Connecity and Delay Euture 2 Anchorage International Airport	
EXHIBIT 5.22.	Capacity and Delay Future 2 Anchorage International Airport -	52
Exhibit 2 22.	Connecity and Delay Egirbanks International Airport Configuration 1	
EXHIBIT 5.25.	VED	56
Exhibit 2 24.	VIK	
EXHIBIT 5.24.		57
E-1:1:4 2 05.	IFK	
EXHIBIT 3.23 .	Critical Departure Hours of ANC for Extern 2	00
Exhibit 3.26:	Critical Departure Hours at ANC for Future 2	01
Exhibit 3.27:	Critical Arrival Hours at ANC for Future 2	62
Exhibit 3.28:	Critical GA and Military Departure Hours at ANC	62
Exhibit 3.29:	Critical Passenger Aircraft Departure Hours at ANC	63
Exhibit 3.30:	Critical Tech Stop Departure Hours at ANC	64
Exhibit 3.31:	Average Cost per Aircraft Operation for Each Minute of Delay	71
Exhibit 3.32:	Additional Annual Aircraft Operating Costs at ANC for Each Minute of	
5 1 11 1 4 4	Delay	71
Exhibit 4.1:	FAI Tech Stop Runways and Taxiways	77
Exhibit 4.2:	ANC Runways	80

TABLE OF CONTENTS (cont)

Page

Exhibit 4.3:	Number of AIAS Tech Stop Hardstands	
Exhibit 4.4:	FAI Tech Stop Hardstands	83
Exhibit 4.5:	FAI Diversion Parking Plan	85
Exhibit 4.6:	ANC Primary Tech Stop Hardstands	86
Exhibit 4.7:	ANC Supplemental Tech Stop Hardstands	
Exhibit 4.8:	AIAS Jet A Storage	91

TABLES

Table 2.1:	Forecast of Anchorage Enplaned and Transit Passengers by Category	9
Table 2.2:	Forecast of Fairbanks Enplaned and Transit Passengers by Category	9
Table 2.3:	Forecast Anchorage International and other U.S. Cargo Tonnage	12
Table 2.4:	Forecast Fairbanks International and other U.S. Cargo Tonnage	12
Table 2.5:	Summary of Aircraft Operations Forecast - Anchorage	15
Table 2.6:	Summary of Aircraft Operations Forecast - Fairbanks	15
Table 2.7:	Summary of Aircraft Operations Forecast - Lake Hood Seaplane Base and	
	Lake Hood Strip	16
Table 3.1:	Tech Stop Daily Operations at ANC	64
Table 3.2:	ANC Delay Analysis Summary-Shifting Tech Stops to FAI	65
Table 3.3:	FAI Delay Analysis Summary-Shifting Tech Stops to FAI	66
Table 3.4:	Compare Average Delay at ANC Moving Half the Tech Stop Operations	
	to FAI	67
Table 3.5:	Annual Delay Reduction - Shift 16 Flights from ANC to FAI - Future 2	
	(2030)	72
Table 4.1:	AIAS Runways Suitable for Tech Stops	76
Table 4.2:	FAI Taxiways Suitable for Tech Stops	79
Table 4.3:	ANC Taxiways Suitable for Tech Stops	81
Table 4.4:	FAI Existing Tech Stop Hardstands	82
Table 4.5:	ANC Existing Tech Stop Hardstands	84
Table 4.6:	ANC Existing Tech Stop Supplemental Hardstands	87
Table 4.7:	Future Anchorage International Airport Tech Stop Parking Requirements	89
Table 4.8:	AIAS Fuel Storage and Delivery Summary	91
Table 4.9:	FAI Jet A Fuel Truck Capacity	93
Table 4.10:	FAI Deicing Equipment	97
Table 4.11:	Recap of International Air Cargo Carrier Comments from AIAS Forecast	
	Survey	101
Table 4.12:	AIAS Existing Tech Stop Facilities and Services Summary	105
Table 5.1:	AIAS Potential Incentives for One Flight Per Day	114
Table 5.2:	Example of Benefits and Costs of Incentive Program That Shifts 16	
	Tech Stop Flights to FAI During ANC Busy Hours	118
Table 5.3:	Comparison of Annual Costs of an FAI Incentive Program and the Annual	
	Costs of a New ANC Runway	120
Table 6.1:	The Potential Effects of Delays on Airlines, AIAS, and Communities	122
Table 6.2:	Average Airline Operating Cost of Cargo and Passenger Delay at ANC	122
Table 6.3:	ANC Direct and Indirect/Induced Jobs and Income	126

LIST OF ACRONYMS

ACI-NA	Airports Council International-North America
AIAS	Alaska International Airport System
AIP	Airport Improvement Program
ANC	Ted Stevens Anchorage International Airport
ASIG	Aircraft Service International Group
BRICS	Brazil, Russia, India, China, and South Africa
CMGTW	certificated maximum gross takeoff weight
CPE	cost per enplanement
DFW	
FAA	
FAI	Fairbanks International Airport
FEDC	Fairbanks Economic Development Corporation
FIS	
G212	Russian routes
GA	
ICCAIt	nternational Congress and Convention Association
IFR	instrument flight rule
ISER	Institute of Social and Economic Research
JBER	Joint Base Elmendorf Richardson
JFK	John F. Kennedy International Airport
LAWA	Los Angeles World Airports
LAX	
LCK	
LHD	Lake Hood Airport
MIA	
NOPAC	
O&D	origin and destination
ONT	Ontario International Airport
ORD	
PDX	Portland International Airport
PRC	People's Republic of China
SEA-Tac	
U.S	
USDOT	
USEPA	United States Environmental Protection Agency
UPS	United Parcel Service
VFR	

EXECUTIVE SUMMARY

The Alaska International Airport System, comprised of Ted Stevens Anchorage International Airport (Anchorage) and Fairbanks International Airport (Fairbanks), initiated the Alaska International Airport System Planning Study to determine how to optimize use of the capacity of both the Anchorage and Fairbanks International Airports to attract and retain international technical stop (refueling and crew change) cargo traffic.

This study provides technical information and broad recommendations for future actions for the Alaska International Airport System. No specific improvements are recommended in this analysis - specific improvements will be evaluated in the Anchorage and Fairbanks Airport Master Plans, currently under way. The Master Plans will propose more detailed long-range plans for each airport using data and findings from this study.

Forecasts/Runway Capacity Analysis

Anchorage had 215,564 operations (landings and takeoffs) in 2010 and operations are forecasted to grow by 1.4% per year with a diverse mix of passenger, cargo, and general aviation aircraft. By comparison, Fairbanks had 121,981 operations in 2010, and operations are forecasted to grow by an average of 1.2% per year. Anchorage is more likely than Fairbanks to reach unacceptable airfield delay during the 20-year planning horizon. Anchorage could reach unacceptable airfield delay when aircraft operations reach 258,000 per year. At 258,000 operations, carriers are projected to experience 30 minutes of average peak hour delay, more than 10% of the time, during the critical hours of the day (when international cargo operations are at their peak).

Delays cost passenger carriers an average of \$31/minute/operation. Delays to cargo carriers are much higher, at an average of \$129/minute/operation. This equates to over \$15 million in additional annual operating costs for all of Anchorage's cargo carriers for each minute of delay by Future 2 (282,000 operations).

Additional Annual Aircraft Operating Costs for Each Minute of Delay at Anchorage

Technical stop and integrated cargo carriers are the most sensitive to delays. Delays during Anchorage's peak periods can mean a missed curfew or a missed cargo sort at another hub. Integrated cargo carriers are particularly delay-sensitive. Most of their cargo is going to Asia and Lower 48 cargo hubs where it is sorted, inspected, processed through customs, and reloaded during time critical sort windows. Anchorage delays can have a down-line domino effect: sort windows missed; cargo delayed; delivery commitments unfulfilled; unhappy customers; business lost.

At 258,000 operations and 30 minutes of average delay in the critical hour, runway delays will likely cause some technical stop carriers and the integrated carriers to change how they operate at Anchorage and some may reduce or eliminate Anchorage operations.

Anchorage's critical peak hours of existing and future operations occur between 11 a.m. and 7 p.m. with the peak hour being 3 p.m. This coincides with the timeframe that most technical stop flights occur.

^{*}Source: HNTB Analysis of USDOT BTS Data

Total Operations

When 258,000 operations will occur has a high degree of uncertainty primarily because international cargo operations are difficult to forecast. Many highly variable factors influence the amount of future North America-Asia air cargo, and the share of that cargo stopping at Anchorage. Using this study's baseline forecast, 258,000 operations could occur in approximately 2024. Using other high and low forecast scenarios, it could occur during a wide range of time, from as early as 2016 to beyond 2030, or it may never happen, as shown in the forecast scenarios graphic below.

Anchorage International Airport Forecast Scenarios and 258,000 Operations Trigger Point

Alternatives - Shifting Traffic to Fairbanks

Primary alternatives available to Anchorage to address potential critical hour delays are: do nothing, change runway use to better use existing capacity, build runway capacity, or shift some traffic to an alternate airport. This study primarily examines the latter, shifting some traffic to another Alaska airport, Fairbanks.

Previous studies have looked at shifting traffic to a new airport on Fire Island or at Point MacKenzie. These alternatives were deemed infeasible, and remain so. Other ideas such as expanding Kenai Airport or using the Cold Bay Airport or Joint Base Elmendorf Richardson for international cargo operations have numerous problems, and are far less practical than use of Fairbanks as an alternative to Anchorage. Fairbanks formerly had technical stop operations by Lufthansa, Cargolux, and Air France, handling up to four technical stop aircraft of these carriers on the ground at one time.

Using an airfield capacity/delay simulation tool, this study examined the effect of shifting some of Anchorage's technical stop traffic to Fairbanks, as a way to reduce Anchorage delays and retain technical stop operations at the Alaska International Airport System. The analysis showed that Fairbanks' runway/taxiway system can handle a move of 50% (45 daily flights) or 100% (90 daily flights) of Anchorage's technical stop traffic without creating airfield delay concerns.

The table below compares the reduction in delay at Anchorage in Future 1 (242,000 operations) and Future 2 (282,000 operations) from moving 50% of Anchorage's technical stops to Fairbanks. It reduces Anchorage's occurrence of unacceptable delays (over 30 minutes) from 75% of the time (without move) to just 13% of the time (with move) at Future 2. Future 1 and Future 2 are forecasted to occur in 2020 and 2030, respectively, under the Baseline Forecast, but when they actually occur is very uncertain.

The table also shows that moving one of the technical stop carriers with 32 daily operations (16 flights) to Fairbanks reduces Anchorage's average peak hour delay as much as 10 minutes per operation. This exercise was done to determine the impacts of getting one technical stop carrier to move initially from Anchorage to Fairbanks to understand how an incremental shift of traffic might benefit Anchorage.

Critical Hours for Integrated Carriers					
	242K Annual Operations (Future 1)		282K Annual Operations (Future 2)		
	Without Move	With 50% Move	Without Move	With 50% Move	With 32 Ops Moved
62 Percent of Time (Configuration 1 VFR)	18.1	6.3	42.1	9	31.4
22 Percent of Time (Configuration 2 VFR)	7.2	6.3	20.3	11.2	
10 Percent of Time (Configuration 1 IFR)	21.8	11.3	57.7	31.2	43.5
3 Percent of Time (Configuration 4 VFR)	>60	>60	>60	>60	

Average Anchorage Delay in Minutes Tech Stop Airlines Moved to Fairbanks

Other Facilities and Services

This study also examined other facilities and services at Anchorage and Fairbanks required by technical stop carriers, to identify potential needs that should be examined further in Anchorage's and Fairbanks' master plans. This examination found:

- Runways at both airports are currently designed to handle technical stop aircraft.
- Fairbanks has parking for six technical stop aircraft, but can only fuel up to three per hour today with a 60-minute turn time. The existing 6 hardstands could handle approximately 25 to 35 daily technical stop flights, depending on the times of day they use Fairbanks. If 50% of Anchorage's technical stop traffic were to shift to Fairbanks (45 daily flights), Fairbanks would need 9 to 10 tech stop hardstands.
- Anchorage has parking for 14 technical stop aircraft, and would need 19 by Future 2, if technical stops did not shift to Fairbanks and Anchorage's 16 supplemental parking spots are not reallocated to tech stops.
- Fairbanks' fuel storage may need to be modified with additional truck refill spots, a hydrant system, and additional on-airport storage expansion, depending on the number and time of day of technical stops.
- Fairbanks requires less deicing than Anchorage due to drier weather.
- Anchorage has an excellent supply of large aircraft mechanics, a parts pool, and a widebody aircraft hangar; Fairbanks has none of these, plus it has colder winter weather.

• Fairbanks' more limited passenger service makes crew changes less efficient. Fairbanks may have better hotel availability and prices than Anchorage during peak summer tourism months, but Anchorage has more national brands.

Alaska International Airport System Existing Technical Stop Facilities and Services Summary

	Fairbanks International Airport	Anchorage International Airport	
	11,800' - CAT III	12,400' - CAT III	
		11,584' - CAT I	
Runways		10,600' - CAT II	
	Para closure of runway for snow romoval	Usually able to keep 2 runways open	
	Kale closure of fullway for show felloval	during snow removal	
	Full parallel taxiway	Full parallel taxiways	
	Short taxi distance for technical stop	Short taxi distance for technical stop	
Taxiways	departures	departures/arrivals	
	Minimal congestion, except during	Some congestion along Taxiway K and in	
	diversions	terminal area	
Aprops	6 drive_through hardstands	14 drive-through hardstands	
Aprons		16 push back supplemental hardstands	
	984 000 gallons storage on airport	56 million gallons storage on airport and	
Fuel		at port	
ruci	60 minutes to fill a technical stop aircraft	60 minutes to fill a technical stop aircraft	
	Fuel more expensive than Anchorage	Fuel less expensive than Fairbanks	
Deice	Minimal deicing due to drier climate and	Frequent deicing	
Deice	less freeze/thaw cycles	Trequent detening	
Maintenance	Colder climate and lack of hangar space	Availability of FedEx hangar	
	Lack of certified mechanics and parts	Certified mechanics and parts pool	
Services	Adequate crew hotels	Adequate crew hotels	
	Catering available	Catering available	
	International trash removal	International trash removal	

Carrier Input

During the preparation of Alaska International Airport System forecasts, 12 international cargo carriers currently using Anchorage were asked about the disadvantages of operating from Fairbanks compared to Anchorage. Their disadvantages of using Fairbanks are listed below:

- No response/not interested (4 responders);
- Longer distances on route flown than Anchorage (2);
- Inadequate deicing facilities; need for 24/7 United States Customs Service and United States Department of Agriculture operating hours; and availability of ground handling, ramp and warehouse;

- Not a good experience when previously using Fairbanks as an alternate to Anchorage; no chocks; bad catering;
- Single runway, cold weather effects on ground handling, cargo handling/storage, and flight crews;
- Lack of ground support equipment, recently had a 14 hour delay; and
- Less frequent/more expensive crew positioning than Anchorage.

Incentives Analysis

An Incentives Analysis examined financial incentives that airports may offer to air carriers, to determine if incentives might be a tool the Alaska International Airport System could use to encourage a shift of traffic to Fairbanks. It found that the Federal Aviation Administration rules governing incentives mostly address passenger carrier incentives; much interpretation is required for application of these guidelines to technical stops and to the use of airline rates and charges to manage congestion. To ensure acceptance by regulators, the Alaska International Airport System should proactively solicit Federal Aviation Administration engagement and approval prior to developing an incentive program.

In general airport incentives, governed by Federal Aviation Administration rules, are allowed for up to two years to encourage new air service, defined as service to a new destination, new nonstop service, a new entrant carrier, or increased frequencies. An airport may offer incentives in the form of airport fee reductions, fee waivers, or use of airport revenue for certain promotional costs, but an airport may not offer air service subsidies. Other public and private sector entities can also offer incentives unbounded by Federal Aviation Administration restrictions, as long as the airport is not involved.

Incentives programs for cargo carriers offered at Rickenbacker International Airport, Dallas-Fort Worth International Airport, Miami International Airport, Los Angeles World Airports, Seattle-Tacoma International Airport, and Portland International Airport were examined. Many included a mix of airport and local government/private incentives. Portland's incentives program was specifically established to challenge Anchorage as a transpacific technical stop.

Potential Alaska International Airport System-provided incentives include waiving or reducing the landing fee, fuel flowage fee, aircraft parking fee, Federal Inspection Service fees, and terminal rent (if applicable). Completely waiving of all of these fees is estimated to save a hypothetical technical stop carrier \$2,832 per flight.

The capability for private sector service and commodity providers at Fairbanks to encourage and facilitate additional technical stop operations by offering incentives and supporting services will most likely be based on market dynamics. If established, these incentives might include fuel pricing, ground handling services, crew lodging, crew transportation, and deicing services.

A Fairbanks incentive program is most likely to be successful if it focuses initially on technical stop carriers that already see some economic advantages to operate from Fairbanks due to geography. Carrier route systems emphasizing flights over Russian airspace (e.g., to and from the People's Republic of China), and eastern North American points would have shorter routes to Fairbanks.

For an incentive program to be accepted by the airlines not participating in the incentives program, the benefits of reduced Anchorage operating delays and reduced need for capacity-related capital projects would need to be apparent.

Because Anchorage operations levels have dropped for several years, diminishing the need to address Anchorage capacity issues, offering incentives should only be considered after Anchorage sees multiple years of international cargo traffic growth, and is confident growth will continue.

Risk Assessment

The Alaska International Airport System, the airlines, and Alaska residents bear some risk of Alaska International Airport System taking action or failing to take action to address Anchorage airfield capacity/delay issues. International cargo carriers face the greatest potential operational risk and benefit under each of the options, but all carriers (passenger and cargo) face financial risks. In turn, Alaska residents face potential consequences of reduction of air service and/or reduction in economic benefits provided by air cargo operations.

Who is Affected by Delay?	Potential Effect of Delay			
Airlines	Increased operating costs			
	• Late cargo deliveries - lost customers/lost revenues			
	International cargo carriers leave Alaska International Airport System			
	• Loss of airport revenues from cargo carriers - higher landing fees paid by			
	remaining carriers			
Alaska International Airport System	• Higher landing fees make the airports less attractive for existing carriers to			
	maintain marginally profitable routes and make it more difficult to attract new			
	air service			
Communities	Potential reductions in flights and increases in fares			
	• Potential loss of jobs and income, particularly from air cargo			

The Potential Effects of Delays on Airlines, Alaska International Airport System, and Communities

If international cargo traffic left Anchorage because of delays, it would have a large effect on the Alaska International Airport System landing fee. For example, if all of the technical stop carriers were to leave Anchorage, the landing fee would double for the carriers still at Alaska International Airport System. If all technical stop carriers and half of the integrated carrier traffic were to leave Anchorage, the landing fee would triple.

If the Alaska International Airport System builds capacity that is not needed, or before it is needed, most of the costs of capacity infrastructure will be borne by the Alaska International Airport System airlines in the form of significantly increased landing fees, without a commensurate reduction in operating costs associated with delay.

The Alaska International Airport System has the risk of investing in infrastructure to support a shift of international cargo traffic to Fairbanks, without certainty that cargo carriers will move to Fairbanks or that they will stay there once they have moved. However the implications of those risks are much lower than the risks of building a runway at Anchorage.

A potential loss of international cargo traffic puts Anchorage and Fairbanks residents, and potentially residents in other Alaskan communities at risk of losing jobs, income, and potentially

air service. According to the McDowell Group, international cargo contributed 3,416 jobs and \$292 million to Anchorage economy in 2012.

FINDINGS/RECOMMENDATIONS

The Alaska International Airport System Planning Study analysis, findings and recommendations should be used to guide future actions to retain and attract international cargo operations, including the Anchorage and Fairbanks Airport Master Plans and Part 150 studies currently under way. Some key findings and recommendations for the Alaska International Airport System include:

- Unacceptable delays are forecast to occur at Anchorage when operations reach 258,000 operations per year under current runway use procedures, but the timeframe for reaching this level of operations is very uncertain. If operations and unacceptable delay reach this level, the Alaska International Airport System will be at risk of losing air service from tech stop and integrated carriers.
- Shifting 50% of Anchorage's peak hour tech stop operations to Fairbanks is a costeffective way to address potential Anchorage airfield delay problems, and would eliminate the need to construct a new Anchorage runway over the next 20 years. Fairbanks' runway can handle the shifted tech stop traffic, with minimal runway delays.
- Since the Alaska International Airport System cannot force tech stop carriers to fly from either airport, master planning at both Anchorage and Fairbanks should examine facility needs with and without a shift of tech stop flights from Anchorage to Fairbanks.
- Financial incentives by the Alaska International Airport System or others could be offered to induce Anchorage tech stop carriers to shift to Fairbanks. Alaska International Airport System-sponsored incentives come at a cost to all the other carriers operating from the Alaska International Airport System, but are less expensive and risky than construction of a new runway. Shifting tech stops from Anchorage to Fairbanks, including an incentive program, should be tested prior to construction of a runway at Anchorage.
- Efforts to shift tech stops to Fairbanks should involve private service providers on and off the airport who would serve tech stop carriers, such as hotels, aircraft maintenance,

fueling and deicing, and carriers who would supply air service for crew changes. These groups might also offer incentives.

- Anchorage operations levels have dropped for several years, diminishing the need to address Anchorage capacity issues. Offering incentives to shift tech stop traffic to Fairbanks should only be considered after Anchorage sees multiple years of international cargo traffic growth, and is confident growth will continue.
- If the Alaska International Airport System experiences strong growth in international cargo operations, but is unsuccessful in shifting traffic to Fairbanks, Anchorage should pursue other alternatives to increase airfield capacity. Other capacity enhancing alternatives that do not require capital costs or incentive costs should also be explored in the Anchorage Master Plan. This may include consideration of changing Anchorage's runway use program to maximize efficiency, reduce delays, and maximize use of existing infrastructure before making new infrastructure investments. If a new runway is needed at Anchorage, a trigger point of about 10-15 years prior to reaching 258,000 operations should be used.