TO: Sarah E Schacher, P.E.
Preconstruction Engineer
Northern Region

THRU: Jason Hill, P.E. JH
Delivery Team Lead
Northern Region

FROM: Carl F. Heim, P.E.
Engineering Manager
Northern Region

DATE: $12 / 06 / 2022$
FILE NO:
h:|projectstrich_hwyl60715_rich_266_341_pass_lanes|0 4 ps\&el02 dsr| 60715 _adsr_richardson hwy mp 266 341_rev8.docx

TELEPHONE NO: 907-451-5359
SUBJECT: Richardson Highway MP 266-341
Passing Lanes OA23(021)/Z607150000
Abbreviated Design Study Report

1. INTRODUCTION

The Richardson Highway, south of Fairbanks, is a two-lane two-way highway designated as a Rural Interstate of the National Highway System and is an important freight route to the interior. The Richardson Highway supports a high percentage of fuel and chemical transport between Fairbanks and outlying rural Alaskan communities, as well as military convoy traffic between Fort Greeley and Fort Wainwright.

During the 2019 calendar year, the highway supported an Average Annual Daily Traffic (AADT) volume ranging from 1,135 vehicles per day (South of Quartz Lake) to 2,638 vehicles per day (South of Eielson Air Force Base Access Road). The highway is generally located in rolling terrain following the Tanana River valley and provides recreation access to multiple state and federal recreation sites. Total traffic volume is composed of 13% commercial delivery and recreational vehicles (RV), 6% of combination tractor-trailer trucks, 1% buses, and 80% passenger vehicles.

The mixture of lower speed "sightseeing" passenger vehicles, RVs and large trucks with commuter vehicles causes conflict and results in driver impatience, inattention, following too close, excessive speed, improper passing, driver fatigue, etc. These are contributing factors in severe head-on and loss of control type of crashes that occur due to lack of passing opportunities at regular intervals. Constructing passing lanes along the Richardson Highway MP 266 to MP 341 supports the goals of Alaska's Strategic Highway Safety Plan to reduce head-on crashes.

Figure 1: Location and Vicinity Map

2. PROJECT DESCRIPTION

The Alaska Department of Transportation and Public Facilities (ADOT\&PF) is proposing to add passing lanes on the Richardson Highway between Delta Junction and Eielson Air Force Base (EAFB) (Mileposts [MP] 266 to 341) (Figure 1). The project study area begins on the north end at EAFB where the two-lane highway transitions into a four-lane highway, with two northbound and two southbound lanes. The project terminates at the south end near Delta Junction where the two-lane highway transitions into a four-lane highway with two northbound and two southbound lanes. Potential passing lanes have been selected in locations that would improve highway safety, capacity, and overall traffic operations. Passing lanes are an effective countermeasure to reduce conflict points for vehicles, the frequency and severity of crashes, aggressive driving behavior, and improve capacity on two-lane rural highways.

For the Richardson Highway, an 8-mile separation interval was used to determine potential locations of passing lanes due to its relatively low traffic volume and number of long tangent sections where existing passing opportunities in the opposing lane are available. Passing lanes are 1 to 2 miles in length (including tapers) to allow for breaking up of traffic platoons, sufficient passing opportunities, and transition ${ }^{1}$. Other improvements within passing lane locations include driveway approaches, clearing

[^0]vegetation to the clear zone, drainage improvements, sign replacement where current signs do not meet retro reflectivity standards, new signs where applicable, and slope stabilization.

3. DESIGN STANDARDS

The design standards followed for this project are:

- A Policy on the Geometric Design of Highways and Streets (GB), 2011, American Association of State Highway and Transportation Officials (AASHTO).
- Alaska DOT\&PF Highway Preconstruction Manual (HPM), State of Alaska, Department of Transportation \& Public Facilities (ADOT\&PF).
- Alaska Flexible Pavement Design Manual, 2004, ADOT\&PF, and associated software.
- Alaska Highway Drainage Manual, 2006, ADOT\&PF
- Alaska Traffic Manual (ATM), 2016, ADOT\&PF.
- Roadside Design Guide, 2011, AASHTO.
- Manual on Uniform Traffic Control Devices (MUTCD), 2009 as amended, U.S. DOT, FHWA).
- Highway Capacity Manual (HCM), 5th Edition, Transportation Research Board, 2010.

The posted speed within the passing lane locations is 65 mph , and a 70 mph design speed was used for roadway widening in this area. See Appendix A for Design Criteria and Design Designations.

4. DESIGN EXCEPTIONS AND DESIGN WAIVERS

Per the HPM, section 1120.1 paragraph 1, "Use the design criteria set forth in the AASHTO A Policy on the Geometric Design of Highways and Streets 2011, as appropriate to the scope of any given project." It is not in the scope of this project to upgrade horizontal or vertical curvature for the current roadway. Roadway widening will match current horizontal and vertical curvature and roadway cross slopes. Therefore, a design exception or design waiver is not applicable for any horizontal or vertical curvature that may not meet current design standards.

5. DESIGN ALTERNATIVES

16 Bi-Directional Passing Lanes

This proposed alternative would construct 16 passing lanes to improve safety by providing assured passing opportunities and accommodate large vehicle traffic.

The location of the proposed passing lanes takes into account traffic operation of nearby intersections and passing lanes in the opposing direction of travel. Proposed passing lanes are generally located in pairs, where improvements to existing climbing lanes are feasible, and placed at regular intervals along the highway so as to provide sufficient passing opportunities and reduce driver frustration. Locations where a slow vehicle is most likely to be encountered were identified. These locations include uphill grades, developed areas where left-turning traffic is likely to occur, and at eight to 13 mile intervals along the highway where platooning traffic is likely to develop. Passing lanes should begin at, or be
extended to locations where truck speeds can be sustained to within a minimum of 10 mph , or desirably within 5 mph , of the design speed ${ }^{2}$.

There are existing northbound and southbound designated climbing/passing lane sections within the project area that are included in the recommended passing lane locations. Generally, these existing lanes are shorter than desired and the adjacent shoulder widths are less than that required for new construction.

The existing climbing/passing lanes are shown in Table 1 below.
Table 1: Existing Climbing/Passing Lanes on Richardson Highway

Southbound	
MP	
$\underline{\text { Begin }}$	$\underline{\text { End }}$
310.7	309.7
302.5	302.1
299.1	298.7
294.0	292.4

Northbound	
MP	
$\underline{\text { End }}$	$\underline{\text { Begin }}$
310.3	309.3
301.5	301.1
292.8	291.9
280.7	280.3

Locating intersections within passing lanes should be done with careful consideration. A 1,500 foot separation is recommended from nearby street intersections where high turning volumes occur so that the intersection's traffic operation is unaffected by the passing lane. This separation distance exceeds the perception and reaction times listed in Table 2C-4 of ATM 2016 for the 65 mph posted speed where a lane change is required.

Sight distances conforming to the GB and the ATM recommended separation interval distances at conflict areas are used to identify the passing lane improvement limits. At the beginning and end of each passing lane, a clear line of sight of 1,000 feet is desirable as the vehicle enters the lane addition or merge transition taper.

Separation intervals included consideration of the existing four-lane section at either end of the project study area at MP 266 and MP 341.

The proposed passing lane locations are listed in Table 2.

[^1]Table 2: Proposed Passing Lane Locations

Southbound		Length (mi.)	Distance from Previous (mi.)	$\begin{array}{\|c\|} \hline \text { Northbound } \\ \hline \text { MP } \end{array}$		Length (mi.)	Distance from Previous (mi.)
$\underline{\text { Begin }}$	End			End	Begin		
336.7	335.8	1.0	4.0	336.7	335.8	1.0	8.0
329.8	328.8	1.0	6.0	327.7	326.6	0.9	8.1
320.4	319.1	1.3	8.3	318.4	316.5	1.9	6.0
311.2	309.7	1.5	7.7	310.3	308.9	1.3	7.3
303.9	302.1	1.7	5.8	301.5	299.6	1.9	6.5
294.1	292.4	1.7	7.7	292.8	290.8	2.0	9.8
283.2	281.8	1.4	9.0	280.7	279.1	1.7	7.6
273.6	272.5	1.0	8.2	271.3	270.2	1.1	3.7

6. PREFERRED DESIGN ALTERNATIVE

Of the 16 passing lane locations evaluated, 10 locations were selected based on available Right of Way (ROW), consideration of potential utility relocation, environmental impacts due to blasting, construction costs, and constructability. The 10 selected passing lanes locations and the six locations removed from consideration are discussed in the following sections.

Figure 2: Proposed Passing Lane Locations

Passing Lanes Selected:

The 10 selected passing lane locations are described in detail below.
Table 3. Project Summary

Southbound		Length (mi.)	Distance from Previous (mi.)	Northbound		Length (mi.)	Distance from Previous (mi.)
MP							
Begin	End			End	Begin		
336.8	335.3	1.2	4.0	336.9	335.7	1.2	7.9
				327.8	326.6	1.2	8.1
311.3	309.4	2.1	24.0	311.0	308.8	2.2	15.6
303.9	302.1	1.7	5.5				
				292.8	290.8	2.0	16.0
283.2	281.8	1.4	18.9	280.7	279.1	1.7	7.8
				271.3	270.2	1.1	3.7

MP 336.8-335.3 Southbound and MP 335.7-336.9 Northbound
Northbound and southbound passing lanes are recommended immediately south of the south EAFB gated access road, maintaining 1,500 feet of separation from the intersection. This location is recommended as it provides a suitable separation interval between the Richardson Highway four-lane section at Moose Creek and recommended passing lanes near Salcha. This location is south of EAFB, does not encroach on adjacent EAFB lands, and no approaches are affected.

MP 326.6-327.8 Northbound

A northbound passing lane is recommended north of the Salcha Elementary School speed reduction zone where the posted speed is reduced to 55 mph . The separation distance is 8.1 miles from the previous northbound passing lane. This location is the first opportunity to provide a dedicated northbound passing lane north of where the posted speed increases to 65 mph . The north end of the passing lane would end approximately 800 feet prior to the Little Salcha River Bridge to avoid bridge widening.

MP 311.3-309.4 Southbound and MP 308.8-311.0 Northbound

A southbound passing lane is recommended to take advantage of an uphill grade and extend an existing southbound climbing lane (MP 309.7 to 310.7). The southern end of the passing lane ends at the existing climbing lane's merge taper, past the hill crest, where truck speeds to within 10 mph of the posted speed can be achieved.

A northbound passing lane is recommended to take advantage of an uphill grade and extend an existing northbound climbing lane (MP 309.3 to 310.5). The passing lane begins 0.4 mile south of the existing climbing lane and at the toe of an uphill slope so that vehicle speeds are maintained as passing begins.

Recommended improvements include widening the existing paved shoulder to 8 feet to maintain consistency with the rest of the highway and conform to new construction standards.

MP 303.9-302.1 Southbound

A southbound passing lane is recommended to take advantage of an uphill grade and extend an existing southbound climbing lane (MP 302.5-302.1). The proposed southbound passing lane terminates over the crest of the hill where the existing climbing lane ends and where truck speeds can be maintained to within 10 mph of the posted speed. Recommended improvements include widening the existing paved shoulder to 8 feet to maintain consistency with the rest of the highway and conform to new construction standards.

MP 290.8-292.8 Northbound

A northbound passing lane is recommended to take advantage of an uphill grade and extend the existing climbing lane (MP 291.9-292.8) approximately 1 mile south. This location takes advantage of slowing vehicles on a 4-mile climb at grade as the roadway moves away from the Tanana River Valley.

MP 283.2-281.8 Southbound and MP 279.1-280.7 Northbound
A southbound passing lane is recommended south of Shaw Creek where passing in the opposing lane is prohibited through a series of horizontal reverse curves. This location takes advantage of horizontal curvature where slow vehicles are likely to be encountered and wetland impacts are avoided.

A northbound passing lane is recommended where passing in the opposing lane is prohibited through a series of horizontal reverse curves. The existing northbound passing lane (MP 280.3-280.7) will be extended south approximately 1.3 miles.

MP 270.2-271.3 Northbound

A one-mile long northbound passing lane is recommended to begin approximately 3.6 miles from the existing Richardson Highway four-lane section at Delta Junction (MP 266.4) where the posted speed increases to 65 mph . This location provides the first dedicated passing lane opportunity after the increase in posted speed at a location where passing in the opposing lane is currently prohibited. Potential impacts include relocation of the overhead fiber optic line to provide hazard-free recoverable slopes within the clear zone offset.

Proposed Passing Lanes Removed from Consideration:

The following six passing lanes were evaluated, but are not recommended for construction based on the detailed description below.

MP 329.8-328.8 Southbound
The southbound passing lane at this location could not be designed without affecting the Tanana floodplain. Several alternatives were considered to avoid widening the highway on the riverside and placing fill within the floodplain, such as shifting the existing centerline away from the Tanana River and steepening side slopes. However, based on the geotechnical evaluation, the existing cut slope on the northbound side of the highway is unstable and will not accommodate re-alignment inland. Relocating the southbound passing lane was also considered, and after initial design, research deemed this infeasible due to the geometric constraints of sight distance, the high density of driveways and nearby bridges. Based on these impacts, this passing lane was removed from the preferred alternative.

MP 320.5-319.0 Southbound and MP 316.4-318.5 Northbound

A southbound passing lane was evaluated at Harding Lake to take advantage of an uphill grade where slow vehicles may be encountered during summer months, due to a higher percentage of left-turning RV and boat-trailer traffic accessing Harding Lake. After design and cost analysis, this passing lane was eliminated due to the high amount of utility relocations required.

A northbound passing lane south of Harding Lake was evaluated to take advantage of an uphill grade and horizontal reverse curves improving efficient passing of slow vehicles. This lane was eliminated due to the need for substantial slope blasting, creating the potential for significant environmental impacts and construction schedule delays.

MP 299.6-301.5 Northbound

A northbound passing lane was evaluated to take advantage of an uphill grade and 55 mph advisory signed horizontal reverse curves where slow vehicles are likely to be encountered. Construction of this passing lane includes extensive cut and fill slopes as the roadway traverses away from the Tanana River Valley. This lane was eliminated due to the need for substantial slope blasting, creating the potential for significant environmental impacts and construction schedule delays.

MP 294.1-292.4 Southbound

A southbound passing lane was evaluated to take advantage of an uphill grade and extend the existing passing lane (MP 294.0-292.4). However, there is a significant amount of ground settlement occurring at this location and it was removed from consideration based upon constructability concerns and recommendations from ADOT\&PF Geotechnical staff.

MP 273.6-272.5 Southbound

A southbound passing lane was evaluated at this location based on the desired 8-mile separation interval between the previous southbound passing lane at MP 281.8 and terminating at least 1,500 ft . north of the Deltana Volunteer Fire Department No. 5 driveway. However, due to a narrowed ROW at this location, construction would not be feasible without acquisitions. Shifting the passing lane south would bring the merge termination to an undesirable distance from the Deltana Volunteer Fire Department driveway. Shifting the passing lane north would not reduce the amount of ROW acquisitions needed to construct the southbound widening for the additional lane. Based on these impacts, this passing lane was removed from the preferred alternative.

7. 3R ANALYSIS

Not applicable for the scope of this project.

8. TRAFFIC ANALYSIS

Crashes reported from 2008 through 2012 (five-year period) were reviewed to determine crash experience on the Richardson Highway between North Pole and Delta Junction. During the five-year period, 250 crashes were reported and classified as follows:

- 80 crashes (32%) involved moose/animals;
- 144 crashes (58%) are non-intersection related, and;
- 26 crashes (10%) are intersection related.

Analysis of Alaska's statewide crash data revealed that 35% of crashes involve impatient driving behavior from causation factors described in the Alaska Highway Safety Plan, FFY2015 (ADOT\&PF 2015b). Impatient driving behavior on highway segments is indicated by causation factors such as unsafe speed, following too closely, improper lane usage/change, improper passing, disregard for nonsignal traffic control devices, and emotional driving. Similar behavior at intersections is indicated by causation factors such as failure to yield and improper turns. These causation factors were applied to the five-year period crashes pre-event condition to screen for crashes that should be directly addressed by passing lanes along the highway. That analysis resulted in 28 of the 144 non-intersection crashes and 12 of the 26 intersection related crashes that are related to impatient driving. Combined, this is 24% of the total crashes (not including moose/animal crashes).

9. HORIZONTAL/VERTICAL ALIGNMENT

No horizontal or vertical adjustments will be made to the existing roadway profile. The super elevation of the existing Richardson Highway roadway will be matched and extended through to the passing lane widening.

11. TYPICAL SECTION

The existing Richardson Highway typical section will be maintained (two 12-ft lanes with 8-ft shoulders) with the addition of a northbound $12-\mathrm{ft}$ lane, a southbound $12 \mathrm{ft}-\mathrm{lane}$, or two $12-\mathrm{ft}$ lanes in the passing sections. The existing paved surface will be excavated from edge of pavement to edge of pavement and replaced with a structural section consisting of:

- 2" HMA, Type II; Class A
- $5 "$ ATB
- 6" Subbase, Grading F

The standard roadway section is shown below.

RICHARDSON HIGHWAY ONE DIRECTION WIDENING

12. PAVEMENT DESIGN

The selected pavement design was developed using the Alaska Flexible Pavement Manual and associated software. The preliminary pavement design was based on General Policy-6 which requires a minimum of one layer of binder course, stabilized base, and a 30-year design life. General Policy-10 requires a minimum 2 inches of asphalt concrete thickness. The pavement design was analyzed using the mechanistic design method.

The preliminary preferred pavement structure will consist of:

- 2" HMA, Type II; Class A
- 5 " ATB
- 6" Subbase, Grading F
- 8 " Selected Material, Type A

Fill placed below the structural section will consist of mineral soil that is free of debris, ice, excess moisture, and other deleterious materials, meeting the requirements for Selected Material, Type B, except existing embankment material meeting the requirements of Selected Material C. A layer of geotextile will be placed outside of the existing embankments, over the existing ground prior to the placement of fill. The geotextile will meet the requirements for Separation as detailed in Section 729 of the DOT\&PF Standard Specifications for Highway Facilities, 2020.

Encountering groundwater during typical embankment construction is not likely; however, groundwater levels are variable throughout the project corridor and can fluctuate. Construct embankments to promote drainage towards ditches in a manner that minimizes erosion potential. Construct ditches to a minimum depth of 3 feet below the pavement surface to minimize movement of water through the roadway structural section, promote drainage away from embankment, and minimize ponding near the embankment toe.

POTENTIAL DIG OUT LOCATIONS:

MP 290.8 to MP 292.8: Observed depressions and pavement distresses are present throughout this section at locations that appear to correspond with existing culverts. Match the overall existing structural section thickness for dig outs constructed in this location.

13. PRELIMINARY BRIDGE LAYOUT

No bridges are located within the passing lane locations.

14. RIGHT-OF-WAY REQUIREMENTS

All work will stay within the existing ROW.

15. MAINTENANCE CONSIDERATIONS

A riprap dike protects the highway along the Tanana River where the river has meandered increasingly closer to the highway. In areas where potential roadway widening is toward the river, the design will enhance the riprap slope as part of the project improvements.

In the project kick-off meeting, Maintenance and Operations (M\&O) mentioned concerns with the road/pavement quality in the Tenderfoot Creek area, specifically road buckling that continues to occur near MP 293. The passing lanes within this area were removed from further consideration due to geotechnical recommendations. M\&O also requested the use of driven pile signage and to grade side slopes such that they can be easily mowed.

The preferred passing lane additions would add approximately 16 lane-miles of roadway for M\&O snow removal and other maintenance considerations.

16. MATERIAL SOURCES

To reduce material hauling and construction costs, the project proposes to extract material from four different material sites (see Table 4 for locations) spaced throughout the project corridor. The material extraction areas range in size from approximately 12 to 21 acres and are anticipated to provide an aggregate total of approximately 200,000 cubic yards of fill.

Table 4: Proposed Material Extraction Sites

Site	Milepost	Section(s)	Township	Range	Meridian	USGS Quadrangle	Latitude Longitude
MS 62-4-013-2	330.7	19	004 S	004 E	Fairbanks	Fairbanks C-2	64.54765 -147.02430
MS 62-4-096-2	314.1	36	006 S	004 E	Fairbanks	Big Delta B-6	64.35499 -146.85576
MS 62-4-105-2	295	28,29	007 S	007 E	Fairbanks	Big Delta B-5	64.284355 -146.354601
MS 62-3-157- 2\&2A	276.5	6	009 S	010 E	Fairbanks	Big Delta A-4	64.166627 -145.86912

17. UTILITY RELOCATION \& COORDINATION

Overhead and underground telecommunications lines run adjacent to the roadway throughout the project corridor. Some overhead crossings may require a line watch during construction.

Potential impacts will require the relocation of the underground fiber optic line to provide adequate coverage and hazard-free recoverable slopes within the clear zone offset from MP 270.2 to 271.3 in the northbound passing lane area.

18. ACCESS CONTROL FEATURES

Full access control exists along the Richardson Highway from Fairbanks to EAFB. This project will not alter access controlled areas. Access control through the project extents is maintained through the driveway permitting process.

19. PEDESTRIAN/BICYCLE (ADA) PROVISIONS

Pedestrians and bicycles will continue to utilize roadway shoulders.

20. SAFETY IMPROVEMENTS

Passing lanes improve safety and level of service on two-lane highways not only within the length of the added passing lane, but also downstream for four to five miles on the highway. Installing passing lanes as a countermeasure has been shown to reduce crashes up to $42 \%^{3}$. In Alaska, the Highway Safety Improvement Program (HSIP) has allowed a crash reduction of 25% of all crashes to be applied 5 miles

[^2]downstream of a passing lane, recognizing its influence over long highway segments. Improved safety may be extended even further downstream where passing lanes are constructed systemically at intervals due to reduced traffic platooning on rural two-lane highways where typically low volumes occur.

21. INTELLIGENT TRANSPORTATION SYSTEM FEATURES

Not applicable for the scope of this project.

22. DRAINAGE

This project will replace or lengthen existing culverts in the passing lane locations. Culverts identified in the Drainage Assessment - Richardson Highway MP 266-341 Passing Lanes, October 2017 memo as needing replacement will be replaced, otherwise existing culverts will be lengthened where needed.

With some exceptions, topography is generally sloped towards the Tanana River from north to south and east to west. Runoff from the road surface is generally collected in side ditches draining to crossing culverts. Multiple culverts discharge directly to the Tanana River and its side sloughs, or small tributary streams. Existing cross culverts are 24 to 36 inches in diameter. Based on the review of as-built drawings, many of these pipes were installed in the 1960's. Existing ditches and culverts generally appear to be adequately sized and conveying surface runoff away from the roadway.

23. SOIL CONDITIONS

Silt and silt-rich soils will be exposed in the subgrade during construction and will be sensitive to moisture, making them difficult to compact. The design will limit exposure of the subgrade to reduce moisture exposer and to maintain the integrity of the subgrade.

In general, the excavated materials below stripping depth will meet the requirements for Selected Material, Type C.

24. EROSION AND SEDIMENT CONTROL

The Contractor will prepare a Storm Water Pollution Prevention Plan (SWPPP) prior to construction in accordance with Alaska Pollution Discharge Elimination System (APDES) General Permit for Alaska and the Storm Water Pollution Prevention Plan Guide. An Erosion and Sediment Control Plan (ESCP) will be included in the contract. The Contractor will be responsible for adapting the Department's ESCP to the Contractor's ways and means, and for providing and maintaining controls of erosion and hazardous materials. All disturbed areas will be stabilized to prevent erosion both during and after construction. APDES, Corps of Engineers Section 404/10, and Alaska Department of Environmental Conservation 401 permits are required.

Temporary erosion control measures may include, but are not limited to: temporary seeding, erosion control mats, watering and/or chemical stabilization for dust control, velocity control BMP's, and perimeter controls. Perimeter controls will be installed at the toe of slopes and disturbed areas within
the project limits to prevent excessive sedimentation to down-slope vegetation and water bodies. The preferred perimeter protection method in the project area will be vegetated buffer. BMP's may include erosion control blankets, diversions berms, wattles and other measures. Seeding of finished slopes may be difficult due to the size of the slopes and lack of sunlight. Use of organic overburden and/or long term erosion control blankets will be investigated to assist in establishing vegetative cover.

All disturbed ground, approximately 78 acres, will be topsoil and seeded or covered with riprap or ditch lining for permanent stabilization.

25. ENVIRONMENTAL COMMITMENTS

The project will include environmental commitments to comply with state and federal environmental protections. A full list, including permit conditions, will be compiled with the final PS\&E once the permits have been issued. The project is anticipated to require a U.S. Army Corps of Engineers Nationwide Permit for approximately 1.2 acres of impacts to wetlands. Wetland impacts will be reduced to the maximum extent practicable during final PS\&E development. The Department intends to adhere to the USFWS guidance on avoiding mechanized vegetation clearing during the recommended bird nesting window for the project area (May 1- July 15).

26. WORK ZONE TRAFFIC CONTROL

This project is not classified as significant for traffic control per ADOT\&PF's Policy and Procedure 05.05.015. The Richardson Highway is classified as a rural interstate. The AADT is less than 30,000 vehicles per day. Work is not expected to fully close the highway. Intermittent lane closure and/or reductions to travelled way widths will be needed. The project will require the extension of multiple culverts, possible dig outs, guardrail replacement and roadway widening. In locations where full culverts may be replaced, the use of partial width construction methodology and roadway detours will be constructed as necessary. The Contractor will be required to develop traffic control plans to execute the work for submittal and approval by the Department prior to implementation.

27. VALUE ENGINEERING

Per Department policy, a value engineering (VE) analysis must be considered for projects with a total estimated value greater than $\$ 40$ Million. The alternative analysis process used value engineering principles for consideration of value added and cost savings, therefore no further benefit from a formal VE study is anticipated and additional analysis is not anticipated for this project.

28. COST ESTIMATE

A cost estimate was developed using the assumed pavement design sections and current unit prices for major construction items. The construction cost listed includes 15% Construction Engineering and an Indirect Cost Allocation Plan (ICAP) of 7.18\%.

The estimated costs for this project are as follows:

Design	$\$ 4,370,000.00$
Utilities	$\$ 1,700,000.00$
Right of Way	$\$ 0.00$
Construction (Includes 15\% Engineering)	$\$ 35,690,000.00$
Total Cost of Project	$\$ 41,760,000.00$

Approved:

cfh
Attachments:
Appendix A: Design Criteria and Design Designations
Appendix B: Environmental Document Signature Page
Appendix C: Pavement Design
Appendix D: Preliminary Plan and Profile Sheets

Copy to:

Preconstruction/Project File
Dan Schacher, M\&O District Superintendent
Original to: Barbara Tanner, P.E., Chief of Contracts
Cc: NR Design Directive 20-01 Distribution

DESIGN CRITERIA
Richardson Highway Passing Lanes MP 266-351 Project No. OA23(021)/Z607150000

ELEMENT	VALUE	SOURCE
Construction Classification		
Design Functional Classification	Rural Interstate (Arterial)	DOT\&PF Design Designation
Design Year	2050	DOT\&PF Design Designation
AADT Construction Year (2024) Design Year (2050)	$\begin{aligned} & 3063 \\ & 4110 \end{aligned}$	DOT\&PF Design Designation DOT\&PF Design Designation
Design Hourly Volume (DHV)	13.6\%	DOT\&PF Design Designation
Directional Split (\%D)	55/45	DOT\&PF Design Designation
Trucks (\%T)	16.5\% (Trucks, Bus, RV)	DOT\&PF Design Designation
Equiv. Single Axle Load (ESAL)	2,464,868	HDL Engineering Consultants, LLC Geotechnical Report
Pavement Design Year	2050, 25-year life	DOT\&PF Design Designation
Design Vehicle	AASHTO WB-67	GB 2011 pg. 2-5
Design Speed, Terrain	70 mph , Rolling	HPC 1120.2.2
Stopping Sight Distance Passing Sight Distance	$\begin{aligned} & 730 \mathrm{ft} \\ & 1,200 \mathrm{ft} \end{aligned}$	GB 2011, Tbl. 3-1 pg.3-4 GB 2011, Tbl. 3-4 pg.3-9
Maximum Allowable Grade Minimum Allowable Grade	4.0\% Longitudinal, 6\% Transverse 2\% (Normal Crown)	GB 2011, Tbl. 7-2, HPC Fig.1120-1 HPC 1130.1.2(2.) (GB 2011, pg. 3-29)
Minimum Radius of Curvature	1660 ft @ $\mathrm{e}_{\max }=6 \%$ (Existing)	HPC 1120, Fig.1120-1
Minimum K-Value for Vertical Curves	Crest: 247 (Existing) Sag: 181 (Existing)	GB 2011, Tbl. 3-34 pg. 3-155 GB 2011, Tbl. 3-36 pg. 3-161
Number of Roadways	1 - two lane, two-way (Existing)	HPC 1120.2.3
Width of Traveled Way	$2-12.0 \mathrm{ft}$ lanes (24' Existing)	HPC 1120.2.3 (GB 2011, Tbl. 7-3)
Width of Shoulder	8.0 ft (Existing)	HPC 1120.2.3 (GB 2011, Tbl. 7-3)
Surface Treatment	Hot Mix Asphalt	HPC 1180.3.1
Side Slope Ratios	Fore: 4:1 ($\mathrm{H}: \mathrm{V}$) Back: 2:1 (H:V)	GB 2011, pg. 4-24
Degree of Access Control	By DOT\&PF Permit	HPC 1120.2.4 and HPC 1190.3
Median Treatment	None	N/A
Illumination:	None	N/A
Curb Usage and Type	None	N/A
Bicycle Provisions	8 ft Shoulder \quad (6 ft min)	HPC 1210.4.2 (FHWA-RD-92-073)
Pedestrian Provisions	8 ft Shoulder	
Miscellaneous Criteria: Clear Zone	30 ft	HPC 1130.2.3 (HPC Table 1130-2)

Proposed By:

Recommended By:

Accepted By:

TO: Sarah E. Schacher, P.E.,
Preconstruction Engineer
Northern Region

FROM:
Jud
Planning Chief
Northern Region

DATE: October 12, 2016
FILE NO: I:\Traffic DatalDESIGN|20121Rich Hwy Passing Lanes_60715.doc
TELEPHONE 451-5150
NO:
SUBJECT: Rich Hwy Passing Lanes MP 266-341
AKSAS \#60715/0A23(021)
Design Designation

Please approve the attached design designation by signing the endorsement below which enables your staff to proceed.

Due to the length of the proposed project, multiple volume and classification counts were used as data references. The data was applied to the specific milepost ranges for the proposed passing lanes.

Any questions should be directed to Scott Vockeroth at 451-2251.

Date
REM
cc: Jonathan Hutchinson, P.E., Engineering Manager, Northern Region

Attachment

Please circulate and return	
Traffic Data \& Forecasting Manager	
P tanning -Managerfoutside-FNSB)	
Planning Chief	
Fairbanks-Area-Plamner(FNSB)	The
Traffic \& Safety	
Any changes, additions, or questions, Please write on this sheet	

DESIGN DESIGNATION

Northern Region Planning
Traffic Data \& Forecasting

ROUTE NAME: Richardson Highway
 STATE ROUTE NO: 190000
 CDS MILEAGE:
 MP 266-341
 FUNCTIONAL CLASS: Rural Interstate

$\begin{aligned} & \text { AADT } \\ & \text { \& DHV } \end{aligned}$	CDS Milepost	AADT by Year			DHV	
		2015	2035	2050	2035	2050
	266-268	2900	3540	4110	450	525
	269-278	2400	2930	3400	415	480
	279-308	1400	1710	1985	240	280
	309-341	2500	3350	3840	475	540
DHV	12.7 for MP 266-268 14.5 for MP 269-341					
D	55-45					
\%		\% Trucks in CDS MP Range				
	Class	266-278		279-308		309-341
Trucks	4	0.05		0.40		0.15
	5	11.3		13.0		10.00
	6	0.65		0.90		0.80
	8	0.25		2.20		1.00
	9	1.00		2.00		1.00
	10	0.50		1.50		0.55
	13	0.25		1.00		0.50
	Total \% Trucks	14.0		21.0		14.0
ESAL'S (Design Lane)	To Be Provided by Design					

State of Alaska
 Department of Transportation \＆Public Facilities Northern Region Design and Engineering Services

TO：Judy Chapman．
Planning Chief
Northern Region
THRU：Sarah E．Schacher，P．E． 8
Preconstruction Engineer Northern Region

FROM：Jonathan Hutchinson，P．E． Engineering Manager Northern Region

DATE：September 27， 2016

PHONE NO：451－5479

FAX NO：451－5126
SUBJECT：Richardson Highway Passing
Lanes MP266－341
AKSAS \＃60715／0A23（021）
Design Designation Request

Please provide a Design Designation for the subject project．

区 Present AADT

\boxtimes Design Year AADT（2048） $2050{ }^{\text {SS }}$
区 Mid－Design Period AADT（20）33） 2035
\square Design Hourly Volume
】 Directional Split
区 Percent Trucks
D Design Functional Classification
\square Intersection Turning Movement Counts at：
Other

The project is scheduled for construction in FY2018．
Please complete the attached Traffic Date Request Form．
Attachment：as stated
QW ncb／mihink

Figure 6-1. Traffic Data Request (TDR) Form

Figure 6-1. Traffic Data Request (TDR) Form

Figure 6-1. Traffic Data Request (TDR) Form

Figure 6-1. Traffic Data Request (TDR) Form

Report	Route Log
CDS Route	RICHARDSON HIGHWAY（190000）
From Milepoint	268
To Milepoint	345

Filter

$$
\begin{array}{ll}
\text { FacilityType } & \text { INTERCHANGE RAMP;NON-INVENTORY;WYE;SECONDARY } \\
& \text { FERRY ACCESS;ROUNDABOUT;PRIMARY FERRY ACCESS; } \\
& \text { NON-INTERCHANGE RAMP;MAINLINE;CONNECTOR }
\end{array}
$$

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
268	FHWA Urban Area	－	－	RURAL AREA（RURAL）（Start at Milepoint 0）	重
268	Functional Class	－	－	MINOR ARTERIAL（Start at Milepoint 131．675）	㤟
268.0485	Intersection	L	－	UNNAMED GATED ROAD	貝
268.1461	Intersection	R	－	SIXTH STREET	高
268.1811	Intersection	R	－	5TH STREET	員
268.3111	Intersection	B	－	4TH STREET	高
268.4609	Intersection	B	－	2ND AVENUE	䯪
268.4879	Traffic Station	－	－	32206000	㪣
268.6317	Intersection	B	185060	GRIZZLY LANE	（10）
268.6317	Intersection	L	185205	RICHARDSON HWY ON LANE	（ 1 （0）
268.8305	Intersection	R	180000	ALASKA HIGHWAY	䝯［0］
268.8305	Functional Class	－	－	MINOR ARTERIAL－＞INTERSTATE	高
268.8583	Milepost	R	－	266	衰［0］
268.8854	Intersection	H	185205	RICHARDSON HIGHWAY ON LANE	衰［0］
268.8854	Intersection	L	185205	RICHARDSON HIGHWAY ON LANE	衰［0］

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
268.9163	Intersection	L	185061	DIEHLS ROAD	責［0］
268.9163	Intersection	R	185020	NISTLER ROAD	知
268.9926	Traffic Station	－	－	31635000	
269.0191	Intersection	L	－	BUFFALO LANE	衰［0］
269.1354	Intersection	R	－	US POST OFFICE ACCESS ROAD	衰
269.1824	Intersection	R	－	KIMBALL STREET	員
269.3697	Intersection	R	－	DEBRAH STREET	面［0］
269.5576	Intersection	R	185230	HAYES STREET	車［0］
269.7575	Intersection	R	185236	RAPIDS STREET	兩
269.8273	Intersection	R	－	DELTA JUNCTION AIRPORT ROAD	覚［0］
269.8404	Milepost	R	－	267	真［0］
269.8581	Intersection	R	－	delta state recreational site ENTRANCE	員
269.954	Intersection	R	－	delta state recreational site ENTRANCE	衰［0］
270.022	Intersection	R	185328	REMINGTON ROAD	衰
270.4307	Intersection	L	－	UNNAMED ROAD	責
270.6118	Intersection	R	182330	BREWIS BOULEVARD	［ 6
270.7949	Milepost	R	－	268	
270.9766	Traffic Station	－	－	31637000	賣 0
271.096	Intersection	R	185000	JACK WARREN ROAD	或
271.2073	Traffic Station	－	－	31638000	貝 0
271.2546	Intersection	L	185300	LARRY SPENGLER ROAD	素［0］
271.7602	Milepost	R	－	269	容［0］
272.7125	Intersection	L	－	REBECCA LANE	責
September 28， 2016 02：13 PM				Page 2 of 12	

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
272.737	Milepost	R	－	270	（1）
272.8375	Intersection	L	－	SANDRA STREET	（0）
273.0969	Intersection	R	－	UNNAMED ROAD	束
273.8411	Milepost	R	－	271	（0）
274.246	Intersection	R	－	BERM ROAD	責［0］
274.5312	Intersection	R	185400	TANANA LOOP ROAD	員 区
274.6867	Milepost	R	－	272	［0］
275.6662	Milepost	R	－	273	彦［0］
276.0709	Intersection	R	－	BECKY LANE	員
276.0825	Intersection	L	－	LEONA LANE	重 6
276.1758	Intersection	R	－	TERRI LANE	产［0］
276.5556	Intersection	R	－	WALTONS WAY	員［0］
276.6391	Milepost	R	－	274	書［0］
277.0652	Intersection	R	－	PIPELINE ROAD	䝯
277.1603	Intersection	L	－	PROBERT STREET	衰［0］
277.2075	Intersection	L	－	MC AFEE STREET	F
277.6025	Intersection	L	185300	LARRY SPENGLER ROAD	\％
277.6149	Intersection	R	185500	RIKA＇S ROAD	衰
277.6548	Milepost	R	－	275	
277.6698	Intersection	L	－	TESORO NORTHERN ENTRANCE ACCESS ROAD	（ 6
277.8547	Intersection	R	－	PIPELINE AND TANANA RIVER ACCESS ROAD	（0）
277.9046	Intersection	R	－	PIPELINE AND TANANA RIVER ACCESS ROAD	衰（0）
278.1611	Bridge Midpoint	U	－	TANANA RIVER BIG DELTA（0524）	異

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
278.5536	Intersection	R	－	HANSON HOLLOW ROAD	－
278.726	Milepost	R	－	276	）
279.699	Traffic Station	－	－	31639000	［0］
279.7048	Milepost	R	－	277	）
280.4251	Intersection	R	185800	QUARTZ LAKE ROAD	［0］
280.581	Milepost	R	－	278	－
281.5438	Milepost	R	－	279	\％
282.6584	Milepost	R	－	280	（0）
283.4708	Intersection	R	－	PIPELINE ROAD 49－APL－1	［0］
283.6502	Milepost	R	－	281	0）
283.8423	Intersection	R	185820	OLD RICHARDSON HIGHWAY＠ SHAW CREEK FLATS	䯪［0］
284.2701	Intersection	R	－	OLD RICHARDSON HIGHWAY＠ SHAW CREEK FLATS	（ 6
284.591	Milepost	R	－	282	（0）
285.539	Milepost	R	－	283	［0］
286.6782	Milepost	R	－	284	（\％）
287.6527	Milepost	R	－	285	（0）
288.0087	Intersection	R	185826	OLD RICH＠SHAW CREEK MP 285．5 ROAD	（0）
288.658	Milepost	R	－	286	者 0
288.7144	Intersection	R	－	PIPELINE ROAD 45－APL－1	（0）
288.9616	Intersection	R	185826	OLD RICH＠SHAW CREEK MP 285．5 ROAD	（0）
289.2236	Bridge Midpoint	U	－	SHAW CREEK（0525）	異 0
289.2521	Intersection	R	186000	SHAW CREEK ROAD	責 \％
289.6418	Milepost	R	－	287	F）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
290.5041	Milepost	R	－	288	賈
290.5974	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	単（0）
290.6245	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	高
291.1937	Intersection	R	185825	OLD RICH＠SHAW CREEK ROAD	責［0］
291.1958	Intersection	R	－	UNNAMED ROAD	（6）
291.4117	Milepost	R	－	289	［ 6
292.1096	Intersection	R	－	TURN OUT LOOP ROAD	䱏［0）
292.2524	Intersection	R	－	TURN OUT LOOP ROAD	衰［0］
292.3947	Milepost	R	－	290	（1）
293.3637	Milepost	R	－	291	㘔［0］
294.316	Milepost	R	－	292	［ 6
294.8985	Intersection	L	－	NOOVIK ROAD	曲
295.3117	Milepost	R	－	293	近
295.8669	Intersection	L	－	RUBY ROAD	或
296.095	Intersection	L	－	TURN OUT LOOP ROAD	
296.2188	Intersection	L	－	TURN OUT LOOP ROAD	責［0］
296.2991	Milepost	R	－	294	䁁 0
297.1404	Intersection	R	－	UNNAMED ROAD	䦽
297.1637	Milepost	R	－	295	䨘
297.2505	Intersection	R	－	UNNAMED ROAD	高
297.5824	Bridge Midpoint	U	－	BANNER CREEK（0526）	䯪［0）
298.1128	Milepost	R	－	296	高
299.0643	Milepost	R	－	297	赖［0］

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
299.7649	Intersection	L	－	UNNAMED ROAD TO RIVER	衰 10
300.0148	Milepost	R	－	298	［0］
300.211	Intersection	L	－	UNNAMED TURN OUT LOOP ROAD	員［0］
300.2688	Intersection	L	－	UNNAMED TURN OUT LOOP ROAD	［0］
300.6738	Intersection	L	－	UNNAMED ROAD	［0］
300.9995	Milepost	R	－	299	）
302.0326	Milepost	R	－	300	－
302.9873	Intersection	R	－	OLD RICHARDSON HIGHWAY AT CANYON CREEK	賈［0］
303.0054	Milepost	R	－	301	高［0］
303.5714	Intersection	R	－	UNNAMED LOOP ROAD	衰
303.8554	Intersection	R	－	UNNAMED LOOP ROAD	（0）
303.9699	Intersection	L	－	UNNAMED ROAD	皟
304.0136	Milepost	R	－	302	䎥
305.0744	Milepost	R	－	303	䯪
305.9166	Milepost	R	－	304	（0）
306.9124	Milepost	R	－	305	\％
307.1955	Intersection	R	－	BIRCH LAKE ROAD	（0）
307.4352	Intersection	R	－	BOARDWALK DRIVE	者［0］
307.6173	Intersection	R	－	DOUGLAS STREET	氣
307.8856	Intersection	R	－	REST AREA LOOP ROAD AT BIRCH LAKE	（6）
307.9152	Milepost	R	－	306	合［0］
307.9958	Intersection	R	－	REST AREA LOOP ROAD AT BIRCH LAKE	高［0）
308.0909	Intersection	L	186500	LOST LAKE ROAD	者［0］

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
308.6159	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	兴［0］
308.937	Milepost	R	－	307	）
309.0214	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	［0］
309.0664	Intersection	R	－	DOT MAINTENANCE CAMP BIRCH LAKE STATION ACCESS ROAD	高
309.1109	Traffic Station	－	－	31695000	［0］
309.937	Milepost	R	－	308	［0］
310.9419	Milepost	R	－	309	
311.751	Intersection	L	－	TURN OUT LOOP ROAD	［］
311.7535	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	（0）
311.8213	Milepost	R	－	310	責
311.8379	Intersection	L	－	TURN LOOP ROAD	（0）
312.2469	Intersection	L	－	GOOSECALL DRIVE	［ 6
312.2799	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	5
312.4489	Intersection	R	－	SHARPS RIDGE	1［0］
312.6843	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	責［0］
312.8229	Milepost	R	－	311	（6）
313.3741	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	（\％）
313.7513	Milepost	R	－	312	\％
314.7593	Milepost	R	－	313	（0）
314.8077	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	［0］
314.8978	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	（0）
315.7561	Milepost	R	－	314	䯪［0］
315.8361	Intersection	R	－	SOLITA STREET／HAUL ROAD	产

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
316.8872	Milepost	R	－	315	\％
317.3226	Intersection	R	－	UNNAMED ROAD	0
317.6837	Milepost	R	－	316	（0）
317.7404	Intersection	R	－	JAMESTOWN COURT	（0）
317.9939	Intersection	R	－	WILLIAMSBURG ROAD	［0］
318.3187	Intersection	R	－	WRONG WAY LANE	（0）
318.6142	Milepost	R	－	317	©
319.3224	Intersection	L	－	OLD RICHARDSON HIGHWAY AT SALCHA／OLD VALDEZ TRAIL	［0］
319.674	Milepost	R	－	318	［0］
319.7788	Intersection	R	－	PERSPECTIVE DRIVE	（ 0
319.9279	Intersection	L	－	OLD VALDEZ TRAIL	， 0
320.6302	Milepost	R	－	319	（0）
320.9029	Intersection	R	187000	SALCHA DRIVE SOUTH	（0）
321.3339	Intersection	L	－	ORCHID DRIVE	（e）
321.4546	Intersection	R	187005	SALCHA DRIVE NORTH	（6）
321.6086	Milepost	R	－	320	（ 0
322.577	Milepost	R	－	321	
322.6556	Intersection	L	－	ROLLING STONE COURT	新 0
323.0907	Intersection	R	187200	HARDING LAKE DRIVE	（10］
323.2993	Intersection	L	－	COUNTRY ROAD	書 6
323.5473	Milepost	R	－	322	䢒
323.7997	Intersection	R	－	HOLLIES ACRES DRIVE	衰
324.0708	Intersection	R	－	PRICE DRIVE	0

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
324.1505	Intersection	L	－	HARRY LUCKE TRAIL	（10）
324.4488	Intersection	L	－	DOWNSTREAM ROAD	离
324.5366	Milepost	R	－	323	F）
324.661	Intersection	R	－	UPHUES DRIVE	\％［0］
324.7637	Intersection	L	－	STATION COURT	）
325.0062	Bridge Midpoint	U	－	SALCHA RIVER（0527）	（0）
325.0486	Traffic Station	－	－	31643000	
325.0524	Intersection	R	－	SALCHA RIVER ACCESS ROAD	［e］
325.2445	Intersection	R	－	AURORA LODGE ROAD	顡 10
325.4365	Intersection	L	－	WALTS ROAD	䨘［0］
325.4951	Milepost	R	－	324	\％
325.6339	Bridge Midpoint	U	－	CLEAR CREEK（0528）	（0）
325.8427	Intersection	R	187240	MUNSON SLOUGH ROAD	［0］
325.8462	Intersection	L	－	OLD RICHARDSON HIGHWAY	（0）
326.1629	Intersection	R	－	TURN OUT LOOP ROAD	（6）
326.2432	Intersection	R	－	TURN OUT LOOP ROAD	［0］
326.3614	Intersection	R	187240	MUNSON SLOUGH ROAD	\％
326.3958	Bridge Midpoint	U	－	MUNSON SLOUGH（0529）	重［0］
326.4864	Milepost	R	－	325	（6）
327.5335	Milepost	R	－	326	衰
328.3315	Intersection	L	－	TRANSFER SITE ACCESS ROAD	名
328.5246	Milepost	R	－	327	1）［0］
329.0848	Intersection	R	187500	CANADAY ROAD	［

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
329.3468	Bridge Midpoint	U	－	LITTLE SALCHA RIVER（0530）	或［0］
329.4191	Milepost	R	－	328	（0）
329.4221	Intersection	L	－	RIVER RUNNING ROAD	員［0］
329.5853	Intersection	B	187700	BALCH WAY	［0］
330.0083	Intersection	R	187700	BALCH WAY	［0］
330.3969	Milepost	R	－	329	異
331.3999	Milepost	R	－	330	（0）
331.7306	Intersection	L	－	BOONDOX DRIVE	蒷
331.8202	Intersection	R	187900	JOHNSON ROAD	䝯［0］
331.912	Intersection	L	188000	OLD RICH／OLD VALDEZ TRAIL＠ SALCHA	異 区
332.3328	Intersection	R	－	SNOW WHITE COURT	責
332.3802	Milepost	R	－	331	蕒［0］
332.5448	Intersection	L	－	COLDFOOD COURT	16
332.6067	Intersection	L	－	FLYING SQUIRREL COURT	戴［0］
332.7368	Intersection	L	－	BULLWINKLE COURT	（6）
333.059	Intersection	R	－	GRIEME ROAD	2 6
333.0622	Intersection	L	－	TOM BEAR TRAIL	異
333.3781	Milepost	R	－	332	（［0］
333.3926	Intersection	L	－	MAGGIE DRIVE	衰［0］
333.5983	Intersection	L	－	PIT RUN COURT	員［0］
333.7931	Intersection	L	－	PAULA COURT	貮
334.1017	Intersection	R	－	CLEVELAND AVENUE	賣［0］
334.1035	Intersection	L	－	HOWELL ROAD	買［0］

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
334.3589	Milepost	R	－	333	衰［0］
334.4934	Intersection	R	－	TENDERFOOT COURT	4［0］
334.9108	Intersection	R	－	CRAZY HORSE LANE	衰［6］
335.1363	Intersection	R	－	AICUZ AVENUE	（e）
335.4299	Milepost	R	－	334	（0）
335.54	Intersection	L	188010	STRINGER ROAD	高［0］
335.895	Intersection	L	－	TRANSFER SITE ACCESS ROAD	（0）
336.4271	Milepost	R	－	335	（ 5
336.4832	Intersection	R	－	28 MILE POND ROAD	覚 0
337.3742	Milepost	R	－	336	［0］
338.4387	Milepost	R	－	337	衰［
338.4503	Intersection	R	－	GATED MILITARY ROAD	（0）
339.0166	Intersection	R	－	GATED MILITARY ROAD	高
339.4451	Milepost	R	－	338	員
340.1657	Intersection	L	－	23 MILE SLOUGH ROAD	賣［0）
340.5233	Milepost	R	－	339	（
341.1303	Intersection	L	－	MILITARY ROAD	（0）
341.5045	Milepost	R	－	340	（［0］
341.6959	Intersection	L	－	MILITARY ROAD	衰
342.0544	Intersection	L	190000SB	RICHARDSON HIGHWAY SB	嘪 区）
342.3339	Traffic Station	－	－	31646000	或 0
342.4652	Intersection	B	－	CENTRAL AVENUE	－［0］
342.5303	Milepost	R	－	341	（\％）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
342.8507	Intersection	R	188121	RICH NB－OLD RICH＠EIELSON RAMP	衰［0］
343.2286	Bridge Midpoint	U	－	EIELSON ACCESS UNDERCROSSING（2133）	責［0］
343.5354	Milepost	R	－	342	責［0］
343.5565	Intersection	B	188120	OLD RICH＠EIELSON－RICH NB RAMP	貫 ¢0）
343.5565	Intersection	R	188120	OLD RICH＠EIELSON－RICH NB RAMP	須［0］
344.0395	Intersection	B	－	HOPE STREET	\％［0］
344.5344	Milepost	R	－	343	貫［0］

Computations and Historic Data

Project:
Rich Hwy Passing Lanes
Project \# 60715
Milepost 266-268

Historic AADT

Route:	190000	Year	AADT
Station:	31637000	2000	
	Rich Hwy South of Jack Warren Rd	2001	2315
Milepoint	271.043	2002	2662
		2003	2794
		2004	2855
2005	2803		
		2006	2728
		2007	3239
	2008	3032	
	2009	3070	
	2010	3191	
		2011	3233
	2012	2882	
	2013	2846	
	2014	2184	
		2015	2938

Growth rate for calculations was 1.00% due to historic traffic patterns

Growth Rate factors
$2035 \quad 1.220$
20501.417

Future AADTs

Year	AADT
2015	2900
2035	3540
2050	4110

K-factor 12.70\%
DHV= 2035450
2050525

Direction Split (D) $=\quad 55-45$

Class Data

Route 180000		CDS MP Year		Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
18001421	Ak Hwy @ Delta MP 1421	196.545	2015	0.05	11.30	0.65	0.25	1.00	0.50	0.25	14.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
		\# Axles		$2 / 3$	2	3	4	5	6	7+	

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project \# 60715
Milepost 269-278

Historic AADT

Route:	190000	Year	AADT
Station:	31638000	2000	
	Rich Hwy North of Jack Warren Rd	2001	1392
Milepoint	271.274	2002	2009
		2003	2302
		2004	2328
2005	2218		
		2006	2411
	2007	2628	
	2008	2256	
	2009	2407	
		2010	2502
	2011	2773	
		2012	
		2013	2215
	2014	1910	
	2015	2424	

Growth rate for calculations was 1.00% due to historic traffic patterns

Growth Rate factors
20351.220
20501.417

Future AADTs

Year	AADT
2015	2400
2035	2930
2050	3400

K-factor	14.10%	
DHV $=$	2035	415
	2050	480

Direction Split(D)= \quad 55-45

Class Data

Route 180000		CDS MP Year		4	5	Percent By Class			10	13	Total Truck \%	
Station \#	Description			6		8	9					
18001421	Ak Hwy @ Delta MP 1421	196.545	2015		0.05	11.30	0.65	0.25	1.00	0.50	0.25	14.00
		Load Fac		1	0.50	0.85	1.20	1.55	2.24	2.24		
		\# Axies		2/3	2	3	4	5	6	$7+$		

Computations and Historic Data

Project:	Rich Hwy Passing Lanes		
Project \#	60715		
Milepost	279-308		
Historic AADT			
Route:	190000	Year	AADT
Station:	31695000	2000	
	Rich Hwy @ Birch Lake Maint Camp	2001	866
Milepoint	309.111	2002	1505
		2003	2706
		2004	1345
		2005	1424
		2006	1284
		2007	1655
		2008	
		2009	1193
		2010	1181
		2011	1225
		2012	1194
		2013	1125
		2014	1198
		2015	1430

Growth rate for calculations was 1.00\% due to historic traffic patterns

Growth Rate factors
$2035 \quad 1.220$
20501.417

Future AADTs

Year	AADT
2015	1400
2035	1710
2050	1985

K-factor 14.10\%

DHV= | 2035 | 240 |
| :--- | :--- |
| | 2050 |

Direction Split (D) $=$ 55-45

Class Data

Route 190000		CDS MP	Year	Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
31695000	Rich Hwy @ Birch Lake Maint Camp	309.111	2015	0.40	13.00	0.90	2.20	2.00	1.50	1.00	21.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
				$2 / 3$	2	3	4	5	6	7+	

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project \# 60715
Milepost 309-341

Historic AADT

Route:	190000	Year	AADT
Station:	31646000	2000	
	Ric Hwy South of EAFB Access Rd	2001	2581
Milepoint	342.401	2002	3278
		2003	2904
2004	3710		
		2005	3411
2006	3377		
		2007	3287
	2008	3005	
	2009	3425	
		2010	3115
	2011	2811	
		2012	2718
	2013	2839	
2014	2267		
		2015	2519

Growth rate for calculations was 1.00\% due to historic traffic patterns

Growth Rate factors
20351.220
20501.417

Future AADTs

Year	AADT
2015	2500
2035	3350
2050	3840

K-factor	14.10%	
DHV $=$	2035	475
	2050	540

Direction Split (D)= 55-45

Class Data

Route 190000		CDS MP Year		Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
31646000	Rich Hwy South of EAFB Access Rd	342.401	2015	0.15	10.00	0.80	1.00	1.00	0.55	0.50	14.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
		\# Axles		$2 / 3$	2	3	4	5	6	7+	

Traffic Data Request Form

Figure 6-1. Traffic Data Request (TDR) Form

Traffic Data Request Form				TDR Fomi-i-10/20/03	
Requested By: Jonathan Hutchinsen			Design Project Number: AKsAs \#60715	Date Requested: $9 / 27 / 16$	
Base Year: 2015 Base Year Total AADT: 2500 AADT Growth Rate Forward (\%/yr): \|\% End Year: Back Cast (\%/yr): Begin Year:			Common Route Name: Rich Hwy Functional Class: Interstate Urban/Rural Historic M.P. Interval:	CDS Route Name: Richardson Hw.y 190000 CDS M.P. Interval: MP 309-341	
Truck Category	Load Factor (ESALs per Truck)	\% of Total AADT in Truck Category	Lane Configuration Sketch: (Designer: Provide skatch of lana layout. Number each lane and show diractiome.) $\mathrm{N} \uparrow$ Rich Hwy		
2-axle	See		(1)	E	
3-axle	AHached				
4-axle			W	(2)	
5-axle					
2 6-axle					
Percent of Base Year Total AADT for Each Numbered Lane in Configuration Sketch:			Comments:		
Lane \# i	\% 55				
Lane \# 2	\% 45				
Lane *	\%				
Lane \#	\%				
Lane *	\%				
Lane *	\%				
Data Provided By: Randi Motsko		Provider's Signature:R1MAI		Date Provided: $10 / 12 / 16$	

Figure 6-1. Traffic Data Request (TDR) Form

Report	Route Log
CDS Route	RICHARDSON HIGHWAY（190000）
From Milepoint	268
To Milepoint	345
Filter	

Filter

FacilityType

INTERCHANGE RAMP；NON－INVENTORY；WYE；SECONDARY FERRY ACCESS；ROUNDABOUT；PRIMARY FERRY ACCESS； NON－INTERCHANGE RAMP；MAINLINE；CONNECTOR

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
268	FHWA Urban Area	－	－	RURAL AREA（RURAL）（Start at Milepoint 0）	（10）
268	Functional Class	－	－	MINOR ARTERIAL（Start at Milepoint 131．675）	者 0
268.0485	Intersection	L	－	UNNAMED GATED ROAD	䯪
268.1461	Intersection	R	－	SIXTH STREET	貝
268.1811	Intersection	R	－	5TH STREET	－
268.3111	Intersection	B	－	4TH STREET	䯪
268.4609	Intersection	B	－	2ND AVENUE	書
268.4879	Traffic Station	－	－	32206000	覚
268.6317	Intersection	B	185060	GRIZZLY LANE	黄［0］
268.6317	Intersection	L	185205	RICHARDSON HWY ON LANE	衰［0］
268.8305	Intersection	R	180000	ALASKA HIGHWAY	員［0）
268.8305	Functional Class	－	－	MINOR ARTERIAL－＞INTERSTATE	衰［0］
268.8583	Milepost	R	－	266	（0）
268.8854	Intersection	H	185205	RICHARDSON HIGHWAY ON LANE	衰
268.8854	Intersection	L	185205	RICHARDSON HIGHWAY ON LANE	喪

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
268.9163	Intersection	L	185061	DIEHLS ROAD	衰
268.9163	Intersection	R	185020	NISTLER ROAD	重［0］
268.9926	Traffic Station	－	－	31635000	）
269.0191	Intersection	L	－	BUFFALO LANE	\％
269.1354	Intersection	R	－	US POST OFFICE ACCESS ROAD	兗［0］
269.1824	Intersection	R	－	KIMBALL STREET	（
269.3697	Intersection	R	－	DEBRAH STREET	員［0］
269.5576	Intersection	R	185230	HAYES STREET	鲐（0）
269.7575	Intersection	R	185236	RAPIDS STREET	（10）
269.8273	Intersection	R	－	DELTA JUNCTION AIRPORT ROAD	員［0］
269.8404	Milepost	R	－	267	（10］
269.8581	Intersection	R	－	DELTA STATE RECREATIONAL SITE ENTRANCE	閴
269.954	Intersection	R	－	DELTA STATE RECREATIONAL SITE ENTRANCE	俨
270.022	Intersection	R	185328	REMINGTON ROAD	員
270.4307	Intersection	L	－	UNNAMED ROAD	衰［0］
270.6118	Intersection	R	182330	BREWIS BOULEVARD	員［6）
270.7949	Milepost	R	－	268	串 6
270.9766	Traffic Station	－	－	31637000	（ $[0]$
271.096	Intersection	R	185000	JACK WARREN ROAD	衰［0］
271.2073	Traffic Station	－	－	31638000	高［0］
271.2546	Intersection	L	185300	LARRY SPENGLER ROAD	（6）
271.7602	Milepost	R	－	269	迷
272.7125	Intersection	L	－	REBECCA LANE	重

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
272.737	Milepost	R	－	270	畗［0］
272.8375	Intersection	L	－	SANDRA STREET	覚［0］
273.0969	Intersection	R	－	UNNAMED ROAD	乗［0］
273.8411	Milepost	R	－	271	竞
274.246	Intersection	R	－	BERM ROAD	亦［0］
274.5312	Intersection	R	185400	TANANA LOOP ROAD	者
274.6867	Milepost	R	－	272	責
275.6662	Milepost	R	－	273	顡［0］
276.0709	Intersection	R	－	BECKY LANE	軎 0
276.0825	Intersection	L	－	LEONA LANE	覓［0］
276.1758	Intersection	R	－	TERRI LANE	責［6］
276.5556	Intersection	R	－	WALTONS WAY	圓
276.6391	Milepost	R	－	274	貧［0）
277.0652	Intersection	R	－	PIPELINE ROAD	責［0］
277.1603	Intersection	L	－	PROBERT STREET	䯪
277.2075	Intersection	L	－	MC AFEE STREET	責［0］
277.6025	Intersection	L	185300	LARRY SPENGLER ROAD	衰
277.6149	Intersection	R	185500	RIKA＇S ROAD	16）
277.6548	Milepost	R	－	275	異［0］
277.6698	Intersection	L	－	TESORO NORTHERN ENTRANCE ACCESS ROAD	衰［0）
277.8547	Intersection	R	－	PIPELINE AND TANANA RIVER ACCESS ROAD	員［9］
277.9046	Intersection	R	－	PIPELINE AND TANANA RIVER ACCESS ROAD	（0）
278.1611	Bridge Midpoint	U	－	TANANA RIVER BIG DELTA（0524）	衰［0）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
278.5536	Intersection	R	－	HANSON HOLLOW ROAD	（ 6
278.726	Milepost	R	－	276	交
279.699	Traffic Station	－	－	31639000	［0］
279.7048	Milepost	R	－	277	
280.4251	Intersection	R	185800	QUARTZ LAKE ROAD	［0］
280.581	Milepost	R	－	278	0）
281.5438	Milepost	R	－	279	蕒
282.6584	Milepost	R	－	280	（0）
283.4708	Intersection	R	－	PIPELINE ROAD 49－APL－1	［0］
283.6502	Milepost	R	－	281	（e）
283.8423	Intersection	R	185820	OLD RICHARDSON HIGHWAY＠ SHAW CREEK FLATS	衰［0］
284.2701	Intersection	R	－	OLD RICHARDSON HIGHWAY＠ SHAW CREEK FLATS	离
284.591	Milepost	R	－	282	2
285.539	Milepost	R	－	283	（e）
286.6782	Milepost	R	－	284	高
287.6527	Milepost	R	－	285	0
288.0087	Intersection	R	185826	OLD RICH＠SHAW CREEK MP 285．5 ROAD	（0）
288.658	Milepost	R	－	286	曹［0］
288.7144	Intersection	R	－	PIPELINE ROAD 45－APL－1	（6）
288.9616	Intersection	R	185826	OLD RICH＠SHAW CREEK MP 285．5 ROAD	重［0）
289.2236	Bridge Midpoint	U	－	SHAW CREEK（0525）	洏［0］
289.2521	Intersection	R	186000	SHAW CREEK ROAD	速
289.6418	Milepost	R	－	287	（0）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
290.5041	Milepost	R	－	288	［ $]$
290.5974	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	異
290.6245	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	高
291.1937	Intersection	R	185825	OLD RICH＠SHAW CREEK ROAD	員［0］
291.1958	Intersection	R	－	UNNAMED ROAD	熏［0］
291.4117	Milepost	R	－	289	（0）
292.1096	Intersection	R	－	TURN OUT LOOP ROAD	衰
292.2524	Intersection	R	－	TURN OUT LOOP ROAD	員［0］
292.3947	Milepost	R	－	290	員［0］
293.3637	Milepost	R	－	291	［
294.316	Milepost	R	－	292	\％
294.8985	Intersection	L	－	NOOVIK ROAD	（0）
295.3117	Milepost	R	－	293	条 0
295.8669	Intersection	L	－	RUBY ROAD	（6）
296.095	Intersection	L	－	TURN OUT LOOP ROAD	（6）
296.2188	Intersection	L	－	TURN OUT LOOP ROAD	員［0］
296.2991	Milepost	R	－	294	\％
297.1404	Intersection	R	－	UNNAMED ROAD	衰［0］
297.1637	Milepost	R	－	295	（0）
297.2505	Intersection	R	－	UNNAMED ROAD	衰［0］
297.5824	Bridge Midpoint	U	－	BANNER CREEK（0526）	高［0）
298.1128	Milepost	R	－	296	啇
299.0643	Milepost	R	－	297	賈［0）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
299.7649	Intersection	L	－	UNNAMED ROAD TO RIVER	衰［0］
300.0148	Milepost	R	－	298	）
300.211	Intersection	L	－	UNNAMED TURN OUT LOOP ROAD	（0）
300.2688	Intersection	L	－	UNNAMED TURN OUT LOOP ROAD	考
300.6738	Intersection	L	－	UNNAMED ROAD	［0］
300.9995	Milepost	R	－	299	［0］
302.0326	Milepost	R	－	300	\％
302.9873	Intersection	R	－	OLD RICHARDSON HIGHWAY AT CANYON CREEK	（ 0
303.0054	Milepost	R	－	301	（0）
303.5714	Intersection	R	－	UNNAMED LOOP ROAD	員
303.8554	Intersection	R	－	UNNAMED LOOP ROAD	（0）
303.9699	Intersection	L	－	UNNAMED ROAD	（6）
304.0136	Milepost	R	－	302	高［0］
305.0744	Milepost	R	－	303	（6）
305.9166	Milepost	R	－	304	（10）
306.9124	Milepost	R	－	305	貵 0
307.1955	Intersection	R	－	BIRCH LAKE ROAD	－
307.4352	Intersection	R	－	BOARDWALK DRIVE	（0）
307.6173	Intersection	R	－	DOUGLAS STREET	［0］
307.8856	Intersection	R	－	REST AREA LOOP ROAD AT BIRCH LAKE	（［0）
307.9152	Milepost	R	－	306	謈
307.9958	Intersection	R	－	REST AREA LOOP ROAD AT BIRCH LAKE	（0）
308.0909	Intersection	L	186500	LOST LAKE ROAD	衰

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
308.6159	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	員［0］
308.937	Milepost	R	－	307	衰
309.0214	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	員
309.0664	Intersection	R	－	DOT MAINTENANCE CAMP BIRCH LAKE STATION ACCESS ROAD	賈［0］
309.1109	Traffic Station	－	－	31695000	谷
309.937	Milepost	R	－	308	覚 6
310.9419	Milepost	R	－	309	（ 5
311.751	Intersection	L	－	TURN OUT LOOP ROAD	事
311.7535	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	衰［0］
311.8213	Milepost	R	－	310	或
311.8379	Intersection	L	－	TURN LOOP ROAD	軎［0）
312.2469	Intersection	L	－	GOOSECALL DRIVE	（\％）
312.2799	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	責 6
312.4489	Intersection	R	－	SHARPS RIDGE	賈［0）
312.6843	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	（
312.8229	Milepost	R	－	311	（\％）
313.3741	Intersection	R	－	OLD RICHARDSON HIGHWAY LOOP	衰［0］
313.7513	Milepost	R	－	312	鰂［0］
314.7593	Milepost	R	－	313	遃
314.8077	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	黄［0］
314.8978	Intersection	L	－	TANANA RIVER TURN OUT LOOP ROAD	衰［0］
315.7561	Milepost	R	－	314	违［0］
315.8361	Intersection	R	－S	SOLITA STREET／HAUL ROAD	商（0）

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
316.8872	Milepost	R	－	315	責［9］
317.3226	Intersection	R	－	UNNAMED ROAD	筫
317.6837	Milepost	R	－	316	㪣
317.7404	Intersection	R	－	JAMESTOWN COURT	鲂
317.9939	Intersection	R	－	WILLIAMSBURG ROAD	䫡［0］
318.3187	Intersection	R	－	WRONG WAY LANE	氟［0］
318.6142	Milepost	R	－	317	貳［0］
319.3224	Intersection	L	－	OLD RICHARDSON HIGHWAY AT SALCHA／OLD VALDEZ TRAIL	員
319.674	Milepost	R	－	318	負
319.7788	Intersection	R	－	PERSPECTIVE DRIVE	（0）
319.9279	Intersection	L	－	OLD VALDEZ TRAIL	高［0］
320.6302	Milepost	R	－	319	（ 6
320.9029	Intersection	R	187000	SALCHA DRIVE SOUTH	（1）
321.3339	Intersection	L	－	ORCHID DRIVE	考［0］
321.4546	Intersection	R	187005	SALCHA DRIVE NORTH	貮
321.6086	Milepost	R	－	320	
322.577	Milepost	R	－	321	（
322.6556	Intersection	L	－	ROLLING STONE COURT	責［0）
323.0907	Intersection	R	187200	HARDING LAKE DRIVE	異［0］
323.2993	Intersection	L	－	COUNTRY ROAD	石［0］
323.5473	Milepost	R	－	322	呂
323.7997	Intersection	R	－	HOLLIES ACRES DRIVE	衰［0］
324.0708	Intersection	R	－	PRICE DRIVE	串［0］

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
324.1505	Intersection	L	－	HARRY LUCKE TRAIL	責［0］
324.4488	Intersection	L	－	DOWNSTREAM ROAD	素
324.5366	Milepost	R	－	323	軎 0
324.661	Intersection	R	－	UPHUES DRIVE	（0）
324.7637	Intersection	L	－	STATION COURT	員
325.0062	Bridge Midpoint	U	－	SALCHA RIVER（0527）	高
325.0486	Traffic Station	－	－	31643000	（\％）
325.0524	Intersection	R	－	SALCHA RIVER ACCESS ROAD	衰［0］
325.2445	Intersection	R	－	AURORA LODGE ROAD	离［0）
325.4365	Intersection	L	－	WALTS ROAD	（\％）
325.4951	Milepost	R	－	324	覚［0］
325.6339	Bridge Midpoint	U	－	CLEAR CREEK（0528）	\％
325.8427	Intersection	R	187240	MUNSON SLOUGH ROAD	（\％）
325.8462	Intersection	L	－	OLD RICHARDSON HIGHWAY	容
326.1629	Intersection	R	－	TURN OUT LOOP ROAD	衰
326.2432	Intersection	R	－	TURN OUT LOOP ROAD	員［0］
326.3614	Intersection	R	187240	MUNSON SLOUGH ROAD	（
326.3958	Bridge Midpoint	U	－	MUNSON SLOUGH（0529）	責
326.4864	Milepost	R	－	325	衰［0］
327.5335	Milepost	R	－	326	員［0］
328.3315	Intersection	L	－	TRANSFER SITE ACCESS ROAD	剈［0］
328.5246	Milepost	R	－	327	衰［0］
329.0848	Intersection	R	187500	CANADAY ROAD	高

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
329.3468	Bridge Midpoint	U	－	LITTLE SALCHA RIVER（0530）	重［0
329.4191	Milepost	R	－	328	\％
329.4221	Intersection	L	－	RIVER RUNNING ROAD	［0］
329.5853	Intersection	B	187700	BALCH WAY	－
330.0083	Intersection	R	187700	BALCH WAY	0
330.3969	Milepost	R	－	329	
331.3999	Milepost	R	－	330	（0）
331.7306	Intersection	L	－	BOONDOX DRIVE	（0）
331.8202	Intersection	R	187900	JOHNSON ROAD	－
331.912	Intersection	L	188000	OLD RICH／OLD VALDEZ TRAIL＠ SALCHA	（0）
332.3328	Intersection	R	－	SNOW WHITE COURT	（0）
332.3802	Milepost	R	－	331	重
332.5448	Intersection	L	－	COLDFOOD COURT	（0）
332.6067	Intersection	L	－	FLYING SQUIRREL COURT	真
332.7368	Intersection	L	－	BULLWINKLE COURT	［0］
333.059	Intersection	R	－	GRIEME ROAD	（0）
333.0622	Intersection	L	－	TOM BEAR TRAIL	（［0］
333.3781	Milepost	R	－	332	［0］
333.3926	Intersection	L	－	MAGGIE DRIVE	［0］
333.5983	Intersection	L	－	PIT RUN COURT	員［0
333.7931	Intersection	L	－	PAULA COURT	衰 0
334.1017	Intersection	R	－	CLEVELAND AVENUE	衰［0］
334.1035	Intersection	L	－	HOWELL ROAD	員
September 28， 2016 02：13 PM				Page 10 of 12	

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
334.3589	Milepost	R	－	333	［0］
334.4934	Intersection	R	－	TENDERFOOT COURT	）
334.9108	Intersection	R	－	CRAZY HORSE LANE	0
335.1363	Intersection	R	－	AICUZ AVENUE	
335.4299	Milepost	R	－	334	－
335.54	Intersection	L	188010	STRINGER ROAD	（0）
335.895	Intersection	L	－	TRANSFER SITE ACCESS ROAD	䯪
336.4271	Milepost	R	－	335	（1）
336.4832	Intersection	R	－	28 MILE POND ROAD	0
337.3742	Milepost	R	－	336	責 0
338.4387	Milepost	R	－	337	［0］
338.4503	Intersection	R	－	GATED MILITARY ROAD	
339.0166	Intersection	R	－	GATED MILITARY ROAD	c
339.4451	Milepost	R	－	338	（1）
340.1657	Intersection	L	－	23 MILE SLOUGH ROAD	員
340.5233	Milepost	R	－	339	©
341.1303	Intersection	L	－	MILITARY ROAD	\％
341.5045	Milepost	R	－	340	員
341.6959	Intersection	L	－	MILITARY ROAD	（
342.0544	Intersection	L	190000SB	RICHARDSON HIGHWAY SB	
342.3339	Traffic Station	－	－	31646000	氣［0］
342.4652	Intersection	B	－	CENTRAL AVENUE	库［0］
342.5303	Milepost	R	－	341	寿

Milepoint	Attribute	Side	Feature CDS	Description	Viewer
342.8507	Intersection	R	188121	RICH NB－OLD RICH＠EIELSON RAMP	䝯［0］
343.2286	Bridge Midpoint	U	－	EIELSON ACCESS UNDERCROSSING（2133）	黄［0］
343.5354	Milepost	R	－	342	貫
343.5565	Intersection	B	188120	OLD RICH＠EIELSON－RICH NB RAMP	容［0］
343.5565	Intersection	R	188120	OLD RICH＠EIELSON－RICH NB RAMP	高［0］
344.0395	Intersection	B	－	HOPE STREET	䯪［0］
344.5344	Milepost	R	－	343	曾

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project \# 60715
Milepost 266-268

Historic AADT

Route:	190000	Year	AADT
Station:	31637000	2000	
	Rich Hwy South of Jack Warren Rd	2001	2315
Milepoint	271.043	2002	2662
		2003	2794
	2004	2855	
2005	2803		
	2006	2728	
		2007	3239
	2008	3032	
	2009	3070	
	2010	3191	
	2011	3233	
	2012	2882	
	2013	2846	
	2014	2184	
	2015	2938	

Growth rate for calculations was 1.00\% due to historic traffic patterns
Growth Rate factors
$2035 \quad 1.220$
$2050 \quad 1.417$

Future AADTs

Year	AADT
2015	2900
2035	3540
2050	4110

K-factor 12.70\%
DHV= 2035450
2050525

Direction Split (D)= $55-45$

Class Data

Route 180000		CDS MP	Year	Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
18001421	Ak Hwy @ Delta MP 1421	196.545	2015	0.05	11.30	0.65	0.25	1.00	0.50	0.25	14.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
				2/3	2	3	4	5	6	$7+$	

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project \# 60715

Milepost 269-278

Historic AADT			
Route:	190000	Year	AADT
Station:	31638000	2000	
	Rich Hwy North of Jack Warren Rd	2001	1392
Milepoint	271.274	2002	2009
		2003	2302
		2004	2328
	2005	2218	
	2006	2411	
	2007	2628	
	2008	2256	
	2009	2407	
	2010	2502	
	2011	2773	
	2012		
	2013	2215	
	2014	1910	
	2015	2424	

Growth rate for calculations was 1.00\% due to historic traffic patterns

Growth Rate factors
20351.220
20501.417

Future AADTs

Year	AADT
2015	2400
2035	2930
2050	3400

K-factor 14.10\%
DHV= 2035415
2050480

Direction Split(D)= 55-45

Class Data

Route 180000		CDS MP	Year	Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
18001421	Ak Hwy @ Delta MP 1421	196.545	2015	0.05	11.30	0.65	0.25	1.00	0.50	0.25	14.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
				$2 / 3$	2	3	4	5	6	$7+$	

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project \# 60715
Milepost 279-308

Historic AADT

Route:	190000	Year	AADT
Station:	31695000	2000	
	Rich Hwy @ Birch Lake Maint Camp	2001	866
Milepoint	309.111	2002	1505
		2003	2706
		2004	1345
	2005	1424	
	2006	1284	
		2007	1655
		2008	
		2009	1193
	2010	1181	
	2011	1225	
	2012	1194	
	2013	1125	
	2014	1198	
	2015	1430	

Growth rate for calculations was 1.00% due to historic traffic patterns

Growth Rate factors
$2035 \quad 1.220$
20501.417

Future AADTs

Year	AADT
2015	1400
2035	1710
2050	1985

K-factor	14.10%	
DHV $=$	2035	240
	2050	280

Direction Split $(D)=55-45$

Class Data

Route 190000		CDS MP	Year	Percent By Class							
Station \#	Description			4	5	6	8	9	10	13	Total Truck \%
31695000	Rich Hwy @ Birch Lake Maint Camp	309.111	2015	0.40	13.00	0.90	2.20	2.00	1.50	1.00	21.00
		Load Factors		1	0.50	0.85	1.20	1.55	2.24	2.24	
				2/3	2	3	4	5	6	$7+$	

Computations and Historic Data

Project: Rich Hwy Passing Lanes
Project\# 60715
Milepost 309-341

Historic AADT

Route:	190000	Year	AADT
Station:	31646000	2000	
	Mic Hwy South of EAFB Access Rd	2001	2581
	342.401	2002	3278
		2003	2904
		2004	3710
2005	3411		
		2006	3377
		2007	3287
		2008	3005
	2009	3425	
		2010	3115
	2011	2811	
		2012	2718
	2013	2839	
	2014	2267	
		2015	2519

Growth rate for calculations was 1.00% due to historic traffic patterns

Growth Rate factors	
2035	1.220
2050	1.417

Future AADTs

Year	AADT
2015	2500
2035	3350
2050	3840

K-factor	14.10%	
DHV $=$	2035	475
	2050	540

Direction Split (D)= 55-45

Class Data

Route 190000	Percent By Class										
Station \#	Description	CDS MP	Year	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 3}$	Total Truck \%
31646000	Rich Hwy South of EAFB Access Rd	342.401	2015	0.15	10.00	0.80	1.00	1.00	0.55	0.50	14.00
		Load Factors	1	0.50	0.85	1.20	1.55	2.24	2.24		
	\#Axles	$2 / 3$	2	3	4	5	6	$7+$			

APPENDIX B

ENVIRONMENTAL DOCUMENT SIGNATURE PAGE

State of Alaska
Department of Transportation \& Public Facilities

EXPEDITED RE-EVALUATION APPROVAL FORM
 (NEPA Assignment Program Projects)

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been carried out by DOT\&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT\&PF.

I. Project Information:

A. Project Name: Richardson Highway MP 266-341 Passing lanes
B. Federal Project Number: 0A23(021)
C. State Project Number: Z607150000
D. Primary/Ancillary Project Connections:

NFHWY00161 Richardson Highway MP 337 Eielson AFB Intersection Improvments, Need ID 29811. The first phase (Need ID 29811) has already been completed.
E. Document Type:

```
\ CE: 23 CFR 771.117(d)(13)
\squareEA
```

F. Project Scope (Use STIP Project Description):

This project is listed in the 2018-2021 Alaska Statewide Transportation Improvement Program [STIP] Amendment 2; Approved January 30, 2019 as Need ID (NID) 30284: "Construct passing lanes at various locations (yet to be determined) on the Richardson Highway to improve safety. Construction will happen in three stages, under NID 30284, NID 30449, and the original NID 29811."

Under the original NID 29811 the project description is: "Construct passing lanes at various locations (yet to be determined) on the Richardson Highway to improve safety. Including intersection improvements at the southern access of Eielson Air Force Base to accommodate freight volumes in support of the addition of two F-35A aircraft squadrons. This is the overall design for the entire termini. Construction will happen in two stages under NID 30284 and this NID 29811".
G. Approval date(s) and impact summary(ies) of the original environmental document and any re-evaluations: CE 9 July 2019 - Section 106 No Historic Properties Affected finding; approximately 2 acres of wetlands will be impacted by fill placed to construct the passing lanes; three anadromous fish passage culverts, and riprap revetments; floodplain encroachments, FNSB floodplain permit required; Type I project noise study completed, no noise impacts; no mechanized vegetation clearing during nesting window (May 1-July 15).
H. Describe changes to project:

Including prior re-evaluations, identify any changes in the project impacts from those identified in the original environmental document. Describe the resulting impacts.
No changes to the project.
I. List of Attachments:

N/A

II. Expedited Re-evaluation:

A. \quad The project meets the criteria of the Programmatic Approval 1, 2, or 3 in the Nov. $13 \quad \square$ Yes \boxtimes No* 2017 Chief Engineer Directive.

- If yes, the REM may approve the re-evaluation.
- If no, the NEPA Program Manager must approve the re-evaluation.
B. Does the following statement apply?
"Based on the information provided I verify that this project as described at this time remains consistent with the conclusions and commitments of the original environmental document, and any prior re-evaluations, and that the environmental document remains valid."
- If yes, sign appropriate line below.
- If no, the action cannot be approved.
C. Additional Information:

III. Re-evaluation Approval Signatures

Programmatic CE

Approved by:
Date:
[Signature] Regional Environmental Manager
[Print Name] Regional Environmental Manager

Non-Programmatic CE

Approval
Recommended by:

Date: 4/8/2020
[Signature] Regional Environmental Manager
Brett Nelson
[Print Name] Regional Environmental Manager

Approved by:

Adam Moser
$[$ Signature $]$ NEPA Program Manager
$\frac{\text { Adam Moser }}{[\text { Print Name }] \text { NEPA Program Manager }}$

Date: $\quad 4 / 8 / 2020$

APPENDIX C

Mine Truck ESALs

Traffic Data for Design and Historic ESALs							
Design Data Input							
Design Construction Year:	2024		Historic Data Input				
Design Length in Years:	5						
Base Year:	2024						
Base Year Total AADT:	192						

\% of Base Year AADT for Each Lane		
Lane		
1		
2		
3		
4		
5		
6		
Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	0
3-Axle (Class 6,8)	0.85	0
4-Axle (Class 7,8)	1.20	0
5-Axle (Class 9,11)	1.55	0
>=6-Axle (Class 10,12,13)	2.24	99.999

Design Lane AADT:	154
Computed Design ESALs:	629,545

Construction Year ESAL Calculations					
Truck Category	\% AADT	Load Factor for Truck Category	ESALs		
	0	0.5	0		
	0	0.85	0		
	0	1.2	0		
	0	1.55	0		
	99.999	2.24	125,909		
	Total Construction Year ESALs:				125,909

$\%$ of Base Year AADT for Each Lane	
Lane	$\%$
1	
2	
3	
4	
5	
6	

Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	
3-Axle (Class 6,8)	0.85	
4-Axle (Class 7,8)	1.20	
5-Axle (Class 9,11)	1.55	
>=6-Axle (Class 10,12,13)	2.24	

Historical Lane AADT:	
Computed Historical ESALs:	

Historical Construction Year ESAL Calculations			
Truck Category	\% AADT	Load Factor for Truck Category	ESALs

MP 269-278 ESALs

Traffic Data for Design and Historic ESALs							
Design Data Input							
Design Construction Year:	2024		Historic Data Input				
Design Length in Years:	26						
Base Year:	2024						
Base Year Total AADT:	2,643						

\% of Base Year AADT for Each Lane		
Lane		
1		
2		
3		
4		
5		
6		
Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	11.3
3-Axle (Class 6,8)	0.85	0.65
4-Axle (Class 7,8)	1.20	0.25
5-Axle (Class 9,11)	1.55	1
>=6-Axle (Class 10,12,13)	2.24	0.75

Design Lane AADT:	1,454
Computed Design ESALs:	$\mathbf{1 , 5 2 5 , 0 2 8}$

Construction Year ESAL Calculations					
Truck Category	\% AADT	Load Factor for Truck Category	ESALs		
	11.3	0.5	29,985		
	0.65	0.85	2,932		
	0.25	1.2	1,592		
	1	1.55	8,226		
	0.75	2.24	8,916		
	Total Construction Year ESALs:				51,651

$\%$ of Base Year AADT for Each Lane	
Lane	$\%$
1	
2	
3	
4	
5	
6	

Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	
3-Axle (Class 6,8)	0.85	
4-Axle (Class 7,8)	1.20	
5-Axle (Class 9,11)	1.55	
>=6-Axle (Class 10,12,13)	2.24	

Historical Lane AADT:	
Computed Historical ESALs:	

Historical Construction Year ESAL Calculations			
Truck Category	\% AADT	Load Factor for Truck Category	ESALs

MP 269-278 Results

H:Jobs\15-041 Richardson Hwy MP266-341 Passing (DOT-NR) 107 -Geotechnicall06 Calcs|Flexible Pavement DesignlDecember 2022 RevisionslRichardson Hwy Passing Lanes_269-278.xml

MP 279-308 ESALs

Traffic Data for Design and Historic ESALs							
Design Data Input							
Design Construction Year:	2024		Historic Data Input				
Design Length in Years:	26						
Base Year:	2024						
Base Year Total AADT:	1,544						

\% of Base Year AADT for Each Lane		
Lane		
1		
2		
3		
4		
5		
6		
Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	13
3-Axle (Class 6,8)	0.85	0.9
4-Axle (Class 7,8)	1.20	2.2
5-Axle (Class 9,11)	1.55	2
>=6-Axle (Class 10,12,13)	2.24	2.5

Design Lane AADT:	849
Computed Design ESALs:	$\mathbf{1 , 7 0 2 , 3 0 0}$

Construction Year ESAL Calculations					
Truck Category	\% AADT	Load Factor for Truck Category	ESALs		
	13	0.5	20,143		
	0.9	0.85	2,371		
	2.2	1.2	8,181		
	2	1.55	9,606		
	2.5	2.24	17,354		
	Total Construction Year ESALs:				57,655

$\%$ of Base Year AADT for Each Lane	
Lane	$\%$
1	
2	
3	
4	
5	
6	

Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	
3-Axle (Class 6,8)	0.85	
4-Axle (Class 7,8)	1.20	
5-Axle (Class 9,11)	1.55	
>=6-Axle (Class 10,12,13)	2.24	

Historical Lane AADT:	
Computed Historical ESALs:	

Historical Construction Year ESAL Calculations			
Truck Category	\% AADT	Load Factor for Truck Category	ESALs
	Total Historic Year ESALs:		

MP 279-308 Results

H:Jjobs|15-041 Richardson Hwy MP266-341 Passing (DOT-NR)107-Geotechnicall06 Calcs|Flexible Pavement DesignlDecember 2022 Revisions|Richardson Hwy Passing Lanes_279-308.xmI

MP 309-341 ESALs

Traffic Data for Design and Historic ESALs							
Design Data Input							
Design Construction Year:	2024		Historic Data Input				
Design Length in Years:	26						
Base Year:	2024						
Base Year Total AADT:	2,871						

\% of Base Year AADT for Each Lane		
Lane		
1		
2		
3		
4		
5		
6		
Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	10
3-Axle (Class 6,8)	0.85	0.8
4-Axle (Class 7,8)	1.20	1
5-Axle (Class 9,11)	1.55	1
>=6-Axle (Class 10,12,13)	2.24	1.05

Design Lane AADT:	1,579
Computed Design ESALs:	$\mathbf{1 , 8 3 4 , 7 2 3}$

Construction Year ESAL Calculations					
Truck Category	\% AADT	Load Factor for Truck Category	ESALs		
	10	0.5	28,817		
	0.8	0.85	3,919		
	1	1.2	6,916		
	1	1.55	8,933		
	1.05	2.24	13,555		
	Total Construction Year ESALs:				62,140

$\%$ of Base Year AADT for Each Lane	
Lane	$\%$
1	
2	
3	
4	
5	
6	

Truck Category	Load Factor	\% AADT
2-Axle (Class 5)	0.50	
3-Axle (Class 6,8)	0.85	
4-Axle (Class 7,8)	1.20	
5-Axle (Class 9,11)	1.55	
>=6-Axle (Class 10,12,13)	2.24	

Historical Lane AADT:	
Computed Historical ESALs:	

Historical Construction Year ESAL Calculations			
Truck Category	\% AADT	Load Factor for Truck Category	ESALs

MP 309-341 Results

H:Jobs|15-041 Richardson Hwy MP266-341 Passing (DOT-NR)107-Geotechnical106 Calcs|Flexible Pavement DesignlDecember 2022 Revisions|Richardson Hwy Passing Lanes_309-341.xmI

APPENDIX D

PREMIMINARLY PLAN AND PROFILE SHEETS

[^0]: ${ }^{1}$ Highway Capacity Manual (HCM), 5th Edition, Transportation Research Board, 2010.

[^1]: ${ }^{2}$ A Policy on the Geometric Design of Highways and Streets (GB), 2011, American Association of State Highway and Transportation Officials (AASHTO)

[^2]: ${ }^{3}$ Benefits and Design/Location Criteria for Passing Lanes, 2004, Missouri Department of Transportation (MoDOT)

